Advertisement

Improving the Accuracy of Cancer Prediction by Ensemble Confidence Evaluation

  • Michael Affenzeller
  • Stephan M. Winkler
  • Herbert Stekel
  • Stefan Forstenlechner
  • Stefan Wagner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8111)

Abstract

This paper discusses a novel approach for the prediction of breast cancer, melanoma and cancer in the respiratory system using ensemble modeling techniques. For each type of cancer, a set of unequally complex predictors are learned by symbolic classification based on genetic programming. In addition to standard ensemble modeling, where the prediction is based on a majority voting of the prediction models, two confidence parameters are used which aim to quantify the trustworthiness of each single prediction based on the clearness of the majority voting. Based on the calculated confidence of each ensemble prediction, predictions might be considered uncertain. The experimental part of this paper discusses the increase of accuracy that can be obtained for those samples which are considered trustable depending on the ratio of predictions that are considered trustable.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Affenzeller, M., Wagner, S.: Offspring selection: A new self-adaptive selection scheme for genetic algorithms. In: Ribeiro, B., Albrecht, R.F., Dobnikar, A., Pearson, D.W., Steele, N.C. (eds.) Adaptive and Natural Computing Algorithms, pp. 218–221. Springer Computer Science, Springer (2005)Google Scholar
  2. 2.
    Affenzeller, M., Winkler, S., Forstenlechner, S., Kronberger, G., Kommenda, M., Wagner, S., Stekel, H.: Enhanced confidence interpretations of gp-based ensemble modeling results. In: Proceedings of the 24th European Modeling & Simulation Symposium, pp. 340–345 (2012)Google Scholar
  3. 3.
    Affenzeller, M., Winkler, S., Jacak, W., Stekel, H.: Cancer prediction models based on blood data with and without tumor marker information. In: Symposium 2011 of the German, Austrian, and Swiss Societies for Hematology and Onkology (2011)Google Scholar
  4. 4.
    Breman, L.: Random forests. Machine Learning 45, 5–32 (2001)CrossRefGoogle Scholar
  5. 5.
    Keijzer, M., Babovic, V.: Genetic programming, ensemble methods and the bias/variance tradeoff - introductory investigations. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 76–90. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Winkler, S., Affenzeller, M., Kronberger, G., Kommenda, M., Wagner, S., Dorfer, V., Jacak, W., Stekel, H.: On the use of estimated tumor marker classifications in tumor diagnosis prediction - a case study for breast cancer. Accepted to be published in: International Journal of Simulation and Process Modelling (2012)Google Scholar
  7. 7.
    Winkler, S., Jacak, M.A.W., Stekel, H.: Identification of cancer diagnosis estimation models using evolutionary algorithms - a case study for breast cancer, melanoma, and cancer in the respiratory system. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2011 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michael Affenzeller
    • 1
  • Stephan M. Winkler
    • 1
  • Herbert Stekel
    • 2
  • Stefan Forstenlechner
    • 1
  • Stefan Wagner
    • 1
  1. 1.Heuristic and Evolutionary Algorithms Laboratory, Bioinformatics Research Group School of Informatics, Communications and MediaUpper Austria University of Applied SciencesHagenbergAustria
  2. 2.Central LaboratoryGeneral Hospital LinzLinzAustria

Personalised recommendations