Advertisement

Evolution of Covariance Functions for Gaussian Process Regression Using Genetic Programming

  • Gabriel Kronberger
  • Michael Kommenda
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8111)

Abstract

In this contribution we describe an approach to evolve composite covariance functions for Gaussian processes using genetic programming. A critical aspect of Gaussian processes and similar kernel-based models such as SVM is, that the covariance function should be adapted to the modeled data. Frequently, the squared exponential covariance function is used as a default. However, this can lead to a misspecified model, which does not fit the data well.

In the proposed approach we use a grammar for the composition of covariance functions and genetic programming to search over the space of sentences that can be derived from the grammar.

We tested the proposed approach on synthetic data from two-dimensional test functions, and on the Mauna Loa CO 2 time series. The results show, that our approach is feasible, finding covariance functions that perform much better than a default covariance function. For the CO 2 data set a composite covariance function is found, that matches the performance of a hand-tuned covariance function.

Keywords

Gaussian Process Genetic Programming Structure Identification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Affenzeller, M., Winkler, S., Wagner, S., Beham, A.: Genetic Algorithms and Genetic Programming: Modern Concepts and Practical Applications. Numerical Insights. CRC Press, Singapore (2009)CrossRefGoogle Scholar
  2. 2.
    Duvenaud, D., Lloyd, J.R., Grosse, R., Tenenbaum, J.B., Ghahramani, Z.: Structure Discovery in Nonparametric Regression through Compositional Kernel Search. ArXiv e-prints (February 2013)Google Scholar
  3. 3.
    Duvenaud, D., Nickisch, H., Rasmussen, C.E.: Additive Gaussian processes. arXiv preprint arXiv:1112.4394 (2011)Google Scholar
  4. 4.
    Gagné, C., Schoenauer, M., Sebag, M., Tomassini, M.: Genetic programming for kernel-based learning with co-evolving subsets selection. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN IX. LNCS, vol. 4193, pp. 1008–1017. Springer, Heidelberg (2006)Google Scholar
  5. 5.
    Hasegawa, Y., Iba, H.: Latent variable model for estimation of distribution algorithm based on a probabilistic context-free grammar. IEEE Transactions on Evolutionary Computation 13(4), 858–878 (2009)CrossRefGoogle Scholar
  6. 6.
    Howley, T., Madden, M.G.: An evolutionary approach to automatic kernel construction. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4132, pp. 417–426. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Koch, P., Bischl, B., Flasch, O., Beielstein, T., Weihs, C., Konen, W.: Tuning and evolution of support vector kernels. Evolutionary Intelligence 5, 153–170 (2012)CrossRefGoogle Scholar
  8. 8.
    Koza, J.R.: Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  9. 9.
    McKay, R.I., Hoai, N.X., Whigham, P.A., Shan, Y., O’Neill, M.: Grammar-based genetic programming: a survey. Genetic Programming and Evolvable Machines 11(3/4), 365–396 (2010)CrossRefGoogle Scholar
  10. 10.
    Rasmussen, C.E., Williams, C.K.: Gaussian Processes for Machine Learning. MIT Press (2006)Google Scholar
  11. 11.
    Wagner, S.: Heuristic optimization software systems – Modeling of heuristic optimization algorithms in the HeuristicLab software environment. Ph.D. thesis, Institute for Formal Models and Verification, Johannes Kepler University, Linz (2009)Google Scholar
  12. 12.
    Wilson, A.G., Prescott Adams, R.: Gaussian Process Covariance Kernels for Pattern Discovery and Extrapolation. ArXiv e-prints (February 2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Gabriel Kronberger
    • 1
  • Michael Kommenda
    • 1
  1. 1.School of Informatics, Communications and MediaUniversity of Applied Sciences Upper AustriaHagenbergAustria

Personalised recommendations