Structural Synthesis of Dispatching Rules for Dynamic Dial-a-Ride Problems

  • Stefan Vonolfen
  • Andreas Beham
  • Michael Kommenda
  • Michael Affenzeller
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8111)


The dial-a-ride problem consists of designing vehicle routes in the area of passenger transportation. Assuming that each vehicle can act autonomously, the problem can be modeled as a multi-agent system. In that context, it is a complex decision process for each agent to determine what action to perform next. In this work, the agent function is evolved using genetic programming by synthesizing basic bits of information. Specialized dispatching rules are synthesized automatically that are adapted to the problem environment. We compare the evolved rules with other dispatching strategies for dynamic dial-a-ride problems on a set of generated benchmark instances. Additionally, since genetic programming is a whitebox-based approach, insights can be gained about important system parameters. For that purpose, we perform a variable frequency analysis during the evolutionary process.


Dispatching Rules Genetic Programming Dynamic Dial-a-ride Problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Affenzeller, M., Winkler, S., Wagner, S., Beham, A.: Genetic Algorithms and Genetic Programming: Modern Concepts and Practical Applications (Numerical Insights), 1st edn. Chapman & Hall (April 2009)Google Scholar
  2. 2.
    Attanasio, A., Cordeau, J., Ghiani, G., Laporte, G.: Parallel tabu search heuristics for the dynamic multi-vehicle dial-a-ride problem. Parallel Computing 30(3), 377–387 (2004)CrossRefGoogle Scholar
  3. 3.
    Beham, A., Kofler, M., Wagner, S., Affenzeller, M.: Agent-based simulation of dispatching rules in dynamic pickup and delivery problems. In: 2nd International Logistics and Industrial Informatics, LINDI 2009, pp. 1–6. IEEE (2009)Google Scholar
  4. 4.
    Berbeglia, G., Cordeau, J., Laporte, G.: Dynamic pickup and delivery problems. European Journal of Operational Research 202(1), 8–15 (2010)CrossRefzbMATHGoogle Scholar
  5. 5.
    Berbeglia, G., Cordeau, J.F., Gribkovskaia, I., Laporte, G.: Static pickup and delivery problems: a classification scheme and survey. Top 15(1), 1–31 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bertsimas, D.J., Van Ryzin, G.: A stochastic and dynamic vehicle routing problem in the euclidean plane. Operations Research 39(4), 601–615 (1991)CrossRefzbMATHGoogle Scholar
  7. 7.
    Cordeau, J.F., Laporte, G.: The dial-a-ride problem: models and algorithms. Annals of Operations Research 153(1), 29–46 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cordeau, J., Laporte, G.: The dial-a-ride problem (darp): Variants, modeling issues and algorithms. 4OR: A Quarterly Journal of Operations Research 1(2), 89–101 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fu, M.C., Glover, F.W., April, J.: Simulation optimization: a review, new developments, and applications. In: 2005 Proceedings of the Winter Simulation Conference, 13. p. IEEE (2005)Google Scholar
  10. 10.
    Kronberger, G.: Symbolic Regression for Knowledge Discovery – Bloat, Overfitting, and Variable Interaction Networks. No. 64 in Johannes Kepler University, Linz, Reihe C, Trauner Verlag+Buchservice GmbH (2011)Google Scholar
  11. 11.
    Laporte, G.: Recent algorithms for the dial-a-ride problem. In: Operations Research for Complex Decision Making, p. 13 (2010)Google Scholar
  12. 12.
    Larsen, A., Madsen, O., Solomon, M.: Partially dynamic vehicle routing-models and algorithms. Journal of the Operational Research Society, 637–646 (2002)Google Scholar
  13. 13.
    van Lon, R., Holvoet, T., Vanden Berghe, G., Wenseleers, T., Branke, J.: Evolutionary synthesis of multi-agent systems for dynamic dial-a-ride problems. In: Proceedings of the Fourteenth International Conference on Genetic and Evolutionary Computation Conference Companion, pp. 331–336. ACM (2012)Google Scholar
  14. 14.
    Pitzer, E., Beham, A., Affenzeller, M., Heiss, H., Vorderwinkler, M.: Production fine planning using a solution archive of priority rules. In: 2011 3rd IEEE International Symposium on Logistics and Industrial Informatics (LINDI), pp. 111–116. IEEE (2011)Google Scholar
  15. 15.
    Schilde, M., Doerner, K.F., Hartl, R.F.: Metaheuristics for the dynamic stochastic dial-a-ride problem with expected return transports. Computers & Operations Research 38(12), 1719–1730 (2011)CrossRefzbMATHGoogle Scholar
  16. 16.
    Wagner, S.: Heuristic Optimization Software Systems - Modeling of Heuristic Optimization Algorithms in the HeuristicLab Software Environment. Ph.D. thesis, Johannes Kepler University, Linz, Austria (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Stefan Vonolfen
    • 1
  • Andreas Beham
    • 1
  • Michael Kommenda
    • 1
  • Michael Affenzeller
    • 1
  1. 1.Heuristic and Evolutionary Algorithms Laboratory, School of Informatics, Communications and MediaUniversity of Applied Sciences Upper AustriaHagenbergAustria

Personalised recommendations