Advertisement

The Influence of Routing on Lateral Transhipment

  • Richard F. Hartl
  • Martin Romauch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8111)

Abstract

We propose a model for lateral transhipments in a supply chain [6] that considers to use one vehicle to combine the transhipments in a tours to improve the overall costs. The corresponding problem is an extension of the One-Commodity Pickup and Delivery Traveling Salesman and the Pickup and Delivery Vehicle Routing Problem. In general we have to consider a maximum tour length and capacity limits, hence the problem also has aspects of an orienteering problem. The main contribution is the discussion of the tour planning aspects for lateral transhipments which may be valuable for an in-house planning but also for price negotiations with external contractors. We will introduce a mixed integer mathematical model for the single route and single commodity version and a LNS heuristic to solve the problem.

Keywords

lateral transhipment orienteering team orienteering vehicle routing pickup and delivery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, Inc. (1993)Google Scholar
  2. 2.
    Balas, E.: The prize collecting traveling salesman problem. Networks 19, 621–636 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chao, I.M., Golden, B., Wasil, E.A.: The team orienteering problem. European Journal of Operational Research 88, 474 (1996)Google Scholar
  4. 4.
    Dell’Amico, M., Maffioli, F., Värbrand, P.: On prize-collecting tours and the asymmetric travelling salesman problem. Internet. Trans. Oper. Res. 2(3), 297–308 (1995)Google Scholar
  5. 5.
    Feillet, Dejax, Gendreau: Traveling salesman problems with profits. Transportation Science 39(2), 188–205 (2005)Google Scholar
  6. 6.
    Herer, Y.T., Tzur, M., Yücesan, E.: The multilocation transshipment problem. IIE Transactions 38, 186–200 (2006)CrossRefGoogle Scholar
  7. 7.
    Hernández-Pérez, H., Salazar-González, J.J.: The multi-commodity one-to-one pickup-and-delivery traveling salesman problem. European Journal of Operational Research 196(3), 987–995 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Parragh, S.N., Doerner, K.F., Hartl, R.F.: A survey on pickup and delivery problems. Part ii: Transportation between pickup and delivery locations. Journal für Betriebswirtschaft 58, 81–117 (2008)CrossRefGoogle Scholar
  9. 9.
    Rainer-Harbach, M., Papazek, P., Hu, B., Raidl, G.R.: Balancing bicycle sharing systems: A variable neighborhood search approach. In: Middendorf, M., Blum, C. (eds.) EvoCOP 2013. LNCS, vol. 7832, pp. 121–132. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Raviv, T., Tzur, M., Forma, I.A.: Balancing bicycle sharing systems: A variable neighborhood search approach evolutionary computation in combinatorial optimization. EURO Journal on Transportation and Logistics (2012)Google Scholar
  11. 11.
    Tricoire, F., Romauch, M., Doerner, K.F., Hartl, R.F.: Heuristics for the multi-period orienteering problem with multiple time windows. Computers & Operations Research 37, 351–367 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Tsiligirides, T.: Heuristic methods applied to orienteering. Journal of the Operational Research Society 35(9), 797–809 (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Richard F. Hartl
    • 1
  • Martin Romauch
    • 1
  1. 1.Department of Business AdministrationUniversity of ViennaViennaAustria

Personalised recommendations