Skip to main content

Efficient Multi-Objective Optimization Using 2-Population Cooperative Coevolution

  • Conference paper
Book cover Computer Aided Systems Theory - EUROCAST 2013 (EUROCAST 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8111))

Included in the following conference series:

Abstract

We propose a 2-population cooperative coevolutionary optimization method that can efficiently solve multi-objective optimization problems as it successfully combines positive traits from classic multi-objective evolutionary algorithms and from newer optimization approaches that explore the concept of differential evolution. A key part of the algorithm lies in the proposed dual fitness sharing mechanism that is able to smoothly transfer information between the two coevolved populations without negatively impacting the independent evolutionary process behavior that characterizes each population.

This work was conducted in the frame of the research program at the Austrian Center of Competence in Mechatronics (ACCM), a part of the COMET K2 program of the Austrian government. The work-related projects are kindly supported by the Austrian government, the Upper Austrian government and the Johannes Kepler University Linz. The authors thank all involved partners for their support. This publication reflects only the authors’ views.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coello, C., Lamont, G., Van Veldhuisen, D.: Evolutionary Algorithms for Solving Multi-Objective Problems. Genetic and Evolutionary Computation Series. Springer (2007)

    Google Scholar 

  2. Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space. Complex Systems 9, 115–148 (1995)

    MathSciNet  MATH  Google Scholar 

  3. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  4. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: IEEE Congress on Evolutionary Computation (CEC 2002), pp. 825–830. IEEE Press (2002)

    Google Scholar 

  5. Deb, K., Goyal, M.: A combined genetic adaptive search (geneas) for engineering design. Computer Science and Informatics 26, 30–45 (1996)

    Google Scholar 

  6. Fleischer, M.: The measure of Pareto optima. applications to multi-objective metaheuristics. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 519–533. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Transactions on Evolutionary Computation 10(5), 477–506 (2006)

    Article  Google Scholar 

  8. Kukkonen, S., Lampinen, J.: GDE3: The third evolution step of generalized differential evolution. In: IEEE Congress on Evolutionary Computation (CEC 2005), pp. 443–450. IEEE Press (2005)

    Google Scholar 

  9. Kukkonen, S., Lampinen, J.: Performance assessment of Generalized Differential Evolution 3 with a given set of constrained multi-objective test problems. In: IEEE Congress on Evolutionary Computation (CEC 2009), pp. 1943–1950. IEEE Press (2009)

    Google Scholar 

  10. Kursawe, F.: A variant of evolution strategies for vector optimization. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 193–197. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  11. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Transactions on Evolutionary Computation 13(2), 284–302 (2009)

    Article  Google Scholar 

  12. Price, K., Storn, R., Lampinen, J.: Differential evolution. Springer (1997)

    Google Scholar 

  13. Robič, T., Filipič, B.: DEMO: Differential evolution for multiobjective optimization. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 520–533. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Zaharie, D.: A comparative analysis of crossover variants in differential evolution. In: Proceedings of the International Multiconference on Computer Science and Information Technology, IMCSIT 2007, pp. 171–181. PTI, Wisla (2007)

    Google Scholar 

  15. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation 8(2), 173–195 (2000)

    Article  Google Scholar 

  16. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Evolutionary Methods for Design, Optimisation and Control with Application to Industrial Problems (EUROGEN 2001), pp. 95–100. International Center for Numerical Methods in Engineering (CIMNE) (2002)

    Google Scholar 

  17. Zăvoianu, A.-C., Bramerdorfer, G., Lughofer, E., Silber, S., Amrhein, W., Klement, E.P.: A hybrid soft computing approach for optimizing design parameters of electrical drives. In: Snasel, V., Abraham, A., Corchado, E.S. (eds.) SOCO Models in Industrial & Environmental Appl. AISC, vol. 188, pp. 347–358. Springer, Heidelberg (2013)

    Google Scholar 

  18. Zăvoianu, A.C., Lughofer, E., Koppelstätter, W., Weidenholzer, G., Amrhein, W., Klement, E.P.: On the performance of master-slave parallelization methods for multi-objective evolutionary algorithms. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS, vol. 7895, pp. 122–134. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zăvoianu, AC., Lughofer, E., Amrhein, W., Klement, E.P. (2013). Efficient Multi-Objective Optimization Using 2-Population Cooperative Coevolution. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory - EUROCAST 2013. EUROCAST 2013. Lecture Notes in Computer Science, vol 8111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53856-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53856-8_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53855-1

  • Online ISBN: 978-3-642-53856-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics