A Multiobjective SFLA-Based Technique for Predicting Motifs in DNA Sequences

  • David L. González-Álvarez
  • Miguel A. Vega-Rodríguez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8111)


In recent years design of new evolutionary techniques for addressing optimization problems is being a booming practice. Furthermore, considering that the vast majority of real optimization problems need to simultaneously optimize more than a single objective function (Multiobjective Optimization Problem - MOP); many of these techniques are also adapted to this multiobjective context. In this paper, we present a multiobjective adaptation of one of the last proposed swarm-based evolutionary algorithms, the Shuffle Frog Leaping Algorithm (SFLA), named Multiobjective Shuffle Frog Leaping Algorithm (MO-SFLA). To evaluate the performance of this new multiobjective algorithm, we have applied it to solve an important biological optimization problem, the Motif Discovery Problem (MDP). As we will see, the structure and operation of MO-SFLA makes it suitable for solving the MDP, achieving better results than other multiobjective evolutionary algorithms and making better predictions than other well-known biological tools.


Shuffle frog leaping algorithm evolutionary algorithm multiobjective optimization motif discovery DNA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 182–197 (2002)CrossRefGoogle Scholar
  2. 2.
    D’haeseleer, P.: What are DNA sequence motifs? Nature Biotechnology 24(4), 423–425 (2006)CrossRefGoogle Scholar
  3. 3.
    Eusuff, M., Lansey, K.: Optimization of water distribution network design using the shuffled frog-leaping algorithm. Journal of Water Resources Planning & Management 129(3), 210–225 (2003)CrossRefGoogle Scholar
  4. 4.
    Fogel, G.B., Porto, V.W., Varga, G., Dow, E.R., Craven, A.M., Powers, D.M., Harlow, H.B., Su, E.W., Onyia, J.E., Su, C.: Evolutionary computation for discovery of composite transcription factor binding sites. Nucleic Acids Research 36(21), e142 (2008)Google Scholar
  5. 5.
    Fogel, G.B., Weekes, D.G., Varga, G., Dow, E.R., Harlow, H.B., Onyia, J.E., Su, C.: Discovery of sequence motifs related to coexpression of genes using evolutionary computation. Nucleic Acids Research 32(13), 3826–3835 (2004)CrossRefGoogle Scholar
  6. 6.
    González-Álvarez, D.L., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez, J.M.: Comparing multiobjective swarm intelligence metaheuristics for DNA motif discovery. Engineering Applications of Artificial Intelligence 26(1), 314–326 (2012)CrossRefGoogle Scholar
  7. 7.
    Tompa, M., et al.: Assessing computational tools for the discovery of transcription factor binding sites. Nature Biotechnology 23(1), 137–144 (2005)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Wingender, E., Dietze, P., Karas, H., Knuppel, R.: TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Research 24(1), 238–241 (1996)CrossRefGoogle Scholar
  9. 9.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary algorithm. Technical report tik-report 103, Swiss Federal Institute of Technology Zurich, Switzerland (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • David L. González-Álvarez
    • 1
  • Miguel A. Vega-Rodríguez
    • 1
  1. 1.Department of Technologies of Computers and Communications, ARCO Research Group, Escuela PolitécnicaUniversity of ExtremaduraCáceresSpain

Personalised recommendations