Control and Command Systems Concepts from Early Work on a Mars Rover

  • Gabriel de Blasio
  • Arminda Moreno-Díaz
  • Roberto Moreno-Díaz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8111)


We recover and develop some robotic systems concepts (on the light of present systems tools) that were originated for an intended Mars Rover in the sixties of the last century at the Instrumentation Laboratory of MIT, where one of the authors was involved.

The basic concepts came from the specifications for a type of generalized robot inspired in the structure of the vertebrate nervous systems, where the decision system was based in the structure and function of the Reticular Formation (RF).

The vertebrate RF is supposed to commit the whole organism to one among various modes of behavior, so taking the decisions about the present overall task. That is, it is a kind of control and command system.

In this concepts updating, the basic idea is that the RF comprises a set of computing units such that each computing module receives information only from a reduced part of the overall, little processed sensory inputs. Each computing unit is capable of both general diagnostics about overall input situations and of specialized diagnostics according to the values of a concrete subset of the input lines.

Slave systems to this command and control computer, there are the sensors, the representations of external environment, structures for modeling and planning and finally, the effectors acting in the external world.


Reticular Formation Computing Unit Instrumentation Laboratory Lateral Reticular Nucleus World Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sutro, L.L., Warren, R.E., Moulton, D., Whitman, C., Zeise, F.: 1963 Advanced Sensor Investigations R-470. Instrumentation Laboratory. MIT, Cambridge (1964)Google Scholar
  2. 2.
    Sutro, L.L., Kilmer, W., McCulloch, W.S., Catchpole, R., Tweed, D., Blum, J., Peterson, D., Moreno-Díaz, R.: Sensory, Decision and Control Systems. R-548. Instrumentation Laboratory. MIT, Cambridge (1966)Google Scholar
  3. 3.
    Sutro, L.L., Kilmer, W.: Assembly of Computers to Command and Control a Robot. R-582. Instrumentation Laboratory. MIT, Cambridge (1969)Google Scholar
  4. 4.
    McCulloch, W.S.: Logic and Closed Loops for a Computer Junket to Mars. In: Caianiello, E. (ed.), pp. 65–91. Springer (1968)Google Scholar
  5. 5.
    McCulloch, W.S., Papert, S., Blum, M., Simoes da Fonseca, J.L., Moreno-Díaz, R.: After-Dinner Address: The Fun of Failures. Ann. New York Acad. Sciences 156(2), 963–968 (1969)CrossRefGoogle Scholar
  6. 6.
    Kilmer, W., McCulloch, W.S.: The Reticular Formation Command and Control System. In: Leibovic, K.N. (ed.) Information Processing in the Nervous System, pp. 297–308. Springer, Heidelberg (1969)CrossRefGoogle Scholar
  7. 7.
    Kilmer, W.: A Global Imhibitory Model for Deciding Modes of Attention. In: Moreno-Díaz, R., Mira-Mira, J. (eds.) Brain Processes, Theories and Models, pp. 125–133. The MIT Press, Cambridge (1996)Google Scholar
  8. 8.
    Delgado, A.E., Mira, J., Moreno-Díaz, R.: A Neurocybernetic Model of Modal Cooperative Decisions in the Kilmer-McCulloch Space. Kybernetes 18(3), 48–57 (1989)CrossRefGoogle Scholar
  9. 9.
    Gottlieb, J., Balan, P.F.: Attention as a decision in information space. Trends in Cognitive Sciences 14(6), 240–248 (2010)CrossRefGoogle Scholar
  10. 10.
    Gorea, A., Sagi, D.: On decision and attention. In: Itti, Rees, Tsotso (eds.) Neurobiology of Attention. Academic Press, Elsevier (2004)Google Scholar
  11. 11.
    Nilsson, N.J.: Principles of Artificial Intelligence. Tioga, Palo Alto (1980)zbMATHGoogle Scholar
  12. 12.
    Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice Hall (2009)Google Scholar
  13. 13.
    Mira, J.: Reverse Neurophysiology: The Embodiments of Mind Revisited. In: Brain Processes, Theories and Models, pp. 37–49. The MIT Press, Mass (1995)Google Scholar
  14. 14.
    Moreno-Díaz, R., Mira, J.: Conceptos para una teoría de la integración multisensorial. In: Proc. II Simpos. Nac. IFAC, pp. 227–232. Universidad, Zaragoza (1984)Google Scholar
  15. 15.
    Brooks, R., Lozano-Perez, T.: A Subdivision Algorithm Configuration Space for Findpath with Rotation. In: de Bondy, A. (ed.) Proc. Eight IJCAI, pp. 799–806. W. Kauffam, Los altos (1983)Google Scholar
  16. 16.
    Mira, J., Delgado, A.E., Manjaros, A., Ros, S., Alvarez, J.R.: Cooperative Processes at the Symbolic level in Cerebral Dynamics: Reliability and Fault Tolerance. In: Moreno-Diaz, R., Mira-Mira, J. (eds.) Brain Processes, Theories and Models, pp. 244–255. The MIT Press, Cambridge (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Gabriel de Blasio
    • 1
  • Arminda Moreno-Díaz
    • 2
  • Roberto Moreno-Díaz
    • 1
  1. 1.Instituto Universitario de Ciencias y Tecnologías CibernéticasUniversidad de Las Palmas de Gran CanariaSpain
  2. 2.School of Computer ScienceMadrid Technical UniversitySpain

Personalised recommendations