Design of Decimation-Based Sequence Generators over Extended Fields

  • A. Fúster-Sabater
  • O. Delgado-Mohatar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8111)


Linear Feedback Shift Registers are currently used as generators of pseudorandom sequences with application in many and different areas. In this work, analysis and software implementation of LFSRs defined over extended fields GF(2n) (where n is related to the size of the registers in the underlying processor) instead of over the binary field GF(2) have been considered. Once the migration from GF(2) into GF(2n) has been accomplished, a study of decimation-based sequence generators has been proposed. Definition of new decimation criteria as well as their software implementation and corresponding analysis complete the work.


Extended LFSR software implementation decimation criterium stream cipher 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Paul, G., Maitra, S.: RC4 Stream Cipher and Its Variants. Discrete Mathematics and Its Applications. CRC Press, Taylor & Francis Group, Boca Raton (2012)Google Scholar
  2. 2.
    Bluetooth, Specifications of the Bluetooth system, Version 1.1,
  3. 3.
    Nagaraj, N.: One-Time Pad as a nonlinear dynamical system. Communications in Nonlinear Science and Numerical Simulation 17, 4029–4036 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Robshaw, M., Billet, O. (eds.): New Stream Cipher Designs: The eSTREAM Finalist. LNCS, vol. 4986. Springer, Heidelberg (2008)Google Scholar
  5. 5.
    Menezes, A.: Handbook of Applied Cryptography. CRC Press (1997)Google Scholar
  6. 6.
    Paar, C., Pelzl, J.: Understanding Cryptography. Springer, Heidelberg (2010)CrossRefzbMATHGoogle Scholar
  7. 7.
    Rueppel, R.A.: Analysis and Design of Stream Ciphers. Springer, New York (1986)CrossRefzbMATHGoogle Scholar
  8. 8.
    Peinado, A., Fúster-Sabater, A.: Generation of pseudorandom binary sequences by means of linear feedback shift registers (LFSRs) with dynamic feedback. Mathematical and Computer Modelling 57, 2596–2604 (2013)CrossRefGoogle Scholar
  9. 9.
    Golomb, S.W.: Shift Register-Sequences. Aegean Park Press, Laguna Hill (1982)Google Scholar
  10. 10.
    Coppersmith, D., Krawczyk, H., Mansour, Y.: The Shrinking Generator. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 22–39. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  11. 11.
    Meier, W., Staffelbach, O.: The Self-Shrinking Generator. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 205–214. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  12. 12.
    Hu, Y., Xiao, G.: Generalized Self-Shrinking Generator. IEEE Transaction on Information Theory 50, 714–719 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Fúster-Sabater, A., Caballero-Gil, P.: Chaotic modelling of the generalized self-shrinking generator. Appl. Soft Comput. 11, 1876–1880 (2011)CrossRefGoogle Scholar
  14. 14.
    Greenan, K., Miller, E., Schwarz, T.: Optimizing Galois field arithmetic for diverse processor architectures and applications. In: Miller, E., Williamson, C. (eds.) Proc. of MASCOTS, pp. 257–266. IEEE Press, New York (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • A. Fúster-Sabater
    • 1
  • O. Delgado-Mohatar
    • 2
  1. 1.Information Security Institute (CSIC)MadridSpain
  2. 2.Universidad Internacional de Castilla y LeónBurgosSpain

Personalised recommendations