Skip to main content

Part of the book series: Power Systems ((POWSYS))

  • 1810 Accesses

Abstract

Emergency control, including emergency operation dispatching and automatic emergency control that provides reliability and survivability of the electric power grids plays an important part in controlling the operating conditions of large Electric Power Systems (EPS)s, as introduced in the previous chapter. Emergency control is performed by the technological (dispatching and automatic) control systems that include the automatic systems of voltage, frequency and capacity regulation, basic automatic systems of EPS elements, relay protection and automatic line control, system emergency control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.A. Sovalov, V.A. Semenov, Emergency control in power systems (Energoatomizdat, Moscow, 1988). (in Russian)

    Google Scholar 

  2. K.A. Brinkis, V.A. Semenov, Selective partitioning protection at out-of step conditions. Elektricheskiye stantsii 2, 66–69 (1975) (in Russian)

    Google Scholar 

  3. A. Osak, A. Domyshev, ANARES Documentation (Novosibirsk, Institute of Power System Dispatching, 2010), (in Russian)

    Google Scholar 

  4. P. Pourbeik, P.S. Kundur, C.W. Taylor, The anatomy of a power grid blackout. IEEE Power Energy Mag. 4(5), 22–29 (2006)

    Article  Google Scholar 

  5. Yu.V. Makarov, V.I. Reshetov, V.A. Strojev, N.I. Voropai, Blackout prevention in the United States, Europe and Russia. in Proccedings of the IEEE, vol. 93, no. 11 (2005)

    Google Scholar 

  6. A.B. Barzam, System Automatic Devices (Moscow, Energiya, 1964). (In Russian)

    Google Scholar 

  7. Ya.E. Gonik, E.S. Iglitsky, Automatic Elimination of Out-of-step Condition (Energoatomizdat, Moscow, 1988). (in Russian)

    Google Scholar 

  8. V.H. Quintana, H. Muller, Particioning of power network and application to security control in IEE Proceedings Generation, Transmission and Distribution, vol. 138, no. 6 (1991)

    Google Scholar 

  9. X.M. Wang, V. Vittal, System islanding using nominal cut sets with minimum net flow. in IEEE PES General Meeting, Denver, USA, 6–10 June 2004

    Google Scholar 

  10. Y. Ohura et al., A predictive out-of-step protection system based on observation of the phase difference between substations. IEEE Trans. Power Deliv. 5(4), 1695–1704 (1990)

    Article  Google Scholar 

  11. V.G. Narovlyansky, A.A. Nalevin, A method for determination of equivalent parameters of power system network during out-of-step condition. Elektrichestvo 8, 15–21 (2005)

    Google Scholar 

  12. A.G. Phadke, J.S. Thorp, Synchronized phasor measurements and their applications (Springer, Berlin, 2008)

    Book  MATH  Google Scholar 

  13. V. Centeno et al., An adaptive out-of-step relay. IEEE Trans. Power Deliv. 12(1), 131–138 (1997)

    Article  Google Scholar 

  14. M.C. Bozchalui, M. Sanaye-Pasand, Out-of-step relaying using phasor measurement unit and equal area criterion. in IEEE Power India Conference, 10–12 April 2006

    Google Scholar 

  15. K.R. Padiyar, S. Krishna, Online detection of loss of synchronism using energy function criterion. IEEE Trans. Power Deliv. 21(1), 46–55 (2006)

    Article  Google Scholar 

  16. Li Li, Liu Yutian, Mu Hong, Yu Zhanxun, Out-of-step splitting scheme based on PMUs. in DRPT’2008 International Conference, Nanjing, China, 6–9 April 2008, 6 p

    Google Scholar 

  17. Methodological Guidelines on Power System Stability. (NTs “ENAS”, Moscow, 2004), (in Russian)

    Google Scholar 

  18. O.N. Voitov, N.I. Voropai, A.Z. Gamm, I.I. Golub, D.N. Efimov, Analysis of Inhomogeneities of Electric Power Systems (Nauka, Novosibirsk, 1999). (in Russian)

    Google Scholar 

  19. CIGRE Defense Plan Against Extreme Contingencies, in CIGRE Task Force C2.02.24, April 2007

    Google Scholar 

  20. W.R. Lachs, Controlling grid integrity after power system emergencies. IEEE Trans. Power Syst. 17(2), 445–450 (2002)

    Article  Google Scholar 

  21. W.R. Lachs, Voltage instability in interconnected power systems: a simulation approach. IEEE Trans. Power Syst. 7(2), 753–761 (1992)

    Article  Google Scholar 

  22. C.W. Taylor, D.C. Erickson, Recording and analyzing the July 2 cascading outage. Comput. Applicat. Power Syst. 10(1), 26–30 (1997)

    Article  Google Scholar 

  23. F. Bellifemine, G. Caire, D. Greenwood, Developing Multi-Agent Systems with JADE (Wiley, England, 2007)

    Book  Google Scholar 

  24. S.D.J. McArthur, E.M. Davidson, V.M. Catterson, A.L. Dimeas, N.D. Hatziargyriou, F. Ponci, T. Funabashi, Multi-agent systems for power engineering applications: part I. IEEE Trans. Power Syst. 22(4), 1743–1752 (2007)

    Article  Google Scholar 

  25. S.D.J. McArthur, E.M. Davidson, V.M. Catterson, A.L. Dimeas, N.D. Hatziargyriou, F. Ponci, T. Funabashi, Multi-agent systems for power engineering applications: part II. IEEE Trans. Power Syst. 22(4), 1753–1759 (2007)

    Article  Google Scholar 

  26. F. Bellifemine F, G. Caire, T. Trucco, G. Rimassa, JADE Programmer’s Guide. CSELT & University of Parma, (2000), Available: http://www.jade.tilab.com/doc

  27. F. Milano, An open source power system analysis toolbox. IEEE Trans. Power Syst. 20(3), 1199–1206 (2005)

    Article  Google Scholar 

  28. D.A. Panasetsky, N.I. Voropai, A multi-agent approach to coordination of different emergency control devices against voltage collapse, in Proceedings of 2009 IEEE Bucharest Power Tech Conference

    Google Scholar 

  29. C. Grigg et al., The IEEE reliability test system-1996. A report prepared by the reliability test system task force of the application of probability methods subcommittee. IEEE Trans. Power Syst. 14, 1010–1020 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Rehtanz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rehtanz, C. et al. (2014). Wide Area Protection. In: Häger, U., Rehtanz, C., Voropai, N. (eds) Monitoring, Control and Protection of Interconnected Power Systems. Power Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53848-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53848-3_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53847-6

  • Online ISBN: 978-3-642-53848-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics