Advertisement

Gray-World Assumption on Perceptual Color Spaces

  • Jonathan Cepeda-Negrete
  • Raul E. Sanchez-Yanez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8333)

Abstract

In this paper, the estimation of the illuminant in color constancy issues is analysed in two perceptual color spaces, and a variation of a well-known methodology is presented. Such approach is based on the Gray-World assumption, here particularly applied on the chromatic components in the CIELAB and CIELUV color spaces. A comparison is made between the outcomes on imagery for each color model considered. Reference images from the Gray-Ball dataset are considered for experimental tests. The performance of the approach is evaluated with the angular error, a metric well accepted in this field. The experimental results show that operating on perceptual color spaces improves the illuminant estimation, in comparison with the results obtained using the standard approach in RGB.

Keywords

Gray-World algorithm color constancy CIELAB CIELUV 

References

  1. 1.
    Gevers, T., Smeulders, A.W.M.: PicToSeek: Combining Color and Shape Invariant Features for Image Retrieval. IEEE Trans. Image Process. 9(1), 102–119 (2000)CrossRefGoogle Scholar
  2. 2.
    Schroeder, M., Moser, S.: Automatic Color Correction Based on Generic Content-Based Image Analysis. In: Proc. of Color Imaging Conference, pp. 41–45 (2001)Google Scholar
  3. 3.
    Gasparini, F., Schettini, R.: Color balancing of digital photos using simple image statistics. Pattern Recognition 37(6), 1201–1217 (2004)CrossRefGoogle Scholar
  4. 4.
    van de Weijer, J., Schmid, C., Verbeek, J.: Using High-Level Visual Information for Color Constancy. In: Proc. of the Inter. Conf. on Computer Vision, pp. 1–8 (2007)Google Scholar
  5. 5.
    Bianco, S., Ciocca, G., Cusano, C., Schettini, R.: Improving Color Constancy Using Indoor-Outdoor Image Classification. IEEE Trans. Image Process. 17(12), 2381–2392 (2008)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Gijsenij, A., Gevers, T.: Color Constancy using Natural Image Statistics. In: IEEE Conf. on Computer Vision and Pattern Recogn., pp. 1–8 (2007)Google Scholar
  7. 7.
    Yang, J., Stiefelhagen, R., Meier, U., Waibel, A.: Visual tracking for multimodal human computer interaction. In: Proc. of the Conference on Human Factors in Computing Systems, pp. 140–147 (1998)Google Scholar
  8. 8.
    Fairchild, M.D.: Color Appearance Models, 2nd edn. John Wiley & Sons (2005)Google Scholar
  9. 9.
    Gijsenij, A., Gevers, T., van de Weijer, J.: Computational Color Constancy: Survey and Experiments. IEEE Trans. Image Process. 20(9), 2475–2489 (2011)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Zeki, S.: A vision of the brain. John Wiley & Sons (1993)Google Scholar
  11. 11.
    Agarwal, V., Abidi, B.R., Koshan, A., Abidi, M.A.: An Overview of Color Constancy Algorithms. J. Pattern Recogn. Res. 1, 42–54 (2006)CrossRefGoogle Scholar
  12. 12.
    Buchsbaum, G.: A spatial processor model for object colour perception. Journal of the Franklin Institute 310, 1–26 (1980)CrossRefGoogle Scholar
  13. 13.
    Land, E.H., McCann, J.J.: Lightness and Retinex Theory. J. Opt. Soc. Am. 61(1), 1–11 (1971)CrossRefGoogle Scholar
  14. 14.
    Finlayson, G.D., Trezzi, E.: Shades of Gray and Colour Constancy. In: Proc. of Color Imaging Conf., pp. 37–41 (2004)Google Scholar
  15. 15.
    van de Weijer, J., Gevers, T., Gijsenij, A.: Edge-Based Color Constancy. IEEE Trans. Image Process. 16(9), 2207–2214 (2007)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Ebner, M.: Color constancy based on local space average color. Machine Vision and Applications 20, 283–301 (2009)CrossRefGoogle Scholar
  17. 17.
    Ebner, M.: Color Constancy. John Wiley & Sons (2007)Google Scholar
  18. 18.
    Kloss, G.K.: Colour Constancy using von Kries Transformations Colour Constancy goes to the Lab. Res. Lett. Inf. Math. Sci. 13, 19–33 (2009)Google Scholar
  19. 19.
    Cepeda-Negrete, J., Sanchez-Yanez, R.E.: Experiments on the White Patch Retinex in RGB and CIELAB color spaces. Acta Universitaria 22(NE-1), 21–26 (2012)Google Scholar
  20. 20.
    Colorimetry, S.J.: Understanding the CIE System. John Wiley & Sons (2007)Google Scholar
  21. 21.
    Stokes, M., Anderson, M., Chandrasekar, S., Motta, R.: A Standard Default Color Space for the Internet - sRGB. Hewlett-Packard, Microsoft (1996)Google Scholar
  22. 22.
    Ciurea, F., Funt, B.: A Large Image Database for Color Constancy Research. In: Proc. of the IS&T/SID Eleventh Color Imaging Conf., pp. 160–164 (2003)Google Scholar
  23. 23.
    Hordley, S.D., Finlayson, G.A.: A Re-evaluation of Colour Constancy Algorithms. In: Proc. of 17th Inter. Conf. on Pattern Recog (ICPR), pp. 76–79 (2004)Google Scholar
  24. 24.
    Bianco, S., Ciocca, G., Cusano, C., Schettini, R.: Automatic color constancy algorithm selection and combination. Pattern Recogn. 43(3), 695–705 (2010)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jonathan Cepeda-Negrete
    • 1
  • Raul E. Sanchez-Yanez
    • 1
  1. 1.Universidad de Guanajuato DICISSalamancaMexico

Personalised recommendations