Video Error Concealment Based on Data Hiding for the Emerging Video Technologies

  • Francisco Aguirre-Ramos
  • Claudia Feregrino-Uribe
  • Rene Cumplido
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8333)


The new high efficiency video coding standard (HEVC) includes structures and tools that were not available in previous standards. The macrobock concept was replaced by a quad-tree structure that includes: coding units, prediction units and transform units; also, new parallelization tools are now available. Video transmissions over error prone environments have the need of reliable and efficient error concealment methods. Unfortunately, most of the existent error concealment methods interfere, or do not take advantage of the new structures and tools.

In this work, a data hiding based error concealment method is proposed for the HEVC. During encoding, information is embedded into the residual transform coefficients; this information, is later retrieved and used during the error concealment process. The performed experiments and results show a superior performance when compared against the non-normative error concealment method included in the H.264/AVC joint model.


Error concealment Data hiding HEVC Quad-tree H.264 


  1. 1.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing 13(4), 600–612 (2004)CrossRefGoogle Scholar
  2. 2.
    ITU-T.: J.247: Objective perceptual multimedia video quality measurement in the presence of a full reference (2008) (online)
  3. 3.
    New video codec to ease pressure on global networks - press release,
  4. 4.
    Pourazad, M., Doutre, C., Azimi, M., Nasiopoulos, P.: HEVC: The New Gold Standard for Video Compression: How Does HEVC Compare with H.264/AVC? IEEE Consumer Electronics Magazine 1(3), 36–46 (2012)CrossRefGoogle Scholar
  5. 5.
    Sullivan, G.J., Ohm, J., Han, W., Wiegand, T.: Overview of the High Efficiency Video Coding (HEVC) Standard. IEEE Transactions on Circuits and Systems for Video Technology 22(12), 1649–1668 (2012)CrossRefGoogle Scholar
  6. 6.
    Sole, J., Joshi, R., Nguyen, N., Ji, T., et al.: Transform Coefficient Coding in HEVC. IEEE Transactions on Circuits and Systems for Video Technology 22(12), 1765–1777 (2012)CrossRefGoogle Scholar
  7. 7.
    Kim, I.-K., McCann, K., Sugimoto, K., Bross, B., Han, W.: High Efficiency Video Coding (HEVC) Test Model 9 Encoder Description. Document of Joint Collaborative Team on Video Coding, JCTVC-K1002v2 (2012)Google Scholar
  8. 8.
    Richardson, I.E.G.: Video Codec Design, Developing Image and Video Compression System. John Wiley & Sons Ltd., England (2002)Google Scholar
  9. 9.
    Wang, Y.-K., Hannuksela, M.M., Varsa, V., Hourunranta, A., Gabbouj, M.: The error concealment feature in the H.26L test model. In: International Conference on Image Processing, vol. 2, pp. II-729–II-732. IEEE (2002)Google Scholar
  10. 10.
    Bossen, F.: Common test conditions and software reference configurations. Document of Joint Collaborative Team on Video Coding, JCTVC-K1100 (2012)Google Scholar
  11. 11.
    HEVC’s Test Model under Consideration, Software Repository,
  12. 12.
    Wiegand, T., Sullivan, G.J., Bjontegaard, G., Luthra, A.: Overview of the H.264/AVC video coding standard. IEEE Transactions on Circuits and Systems for Video Technology 13(7), 560–576 (2003)CrossRefGoogle Scholar
  13. 13.
    Pyun, J.-Y., Lee, J.-S., Jeong, J.-W., Jeong, J.-H., Ko, S.-J.: Robust error concealment for visual communications in burst-packet-loss networks. IEEE Transactions on Consumer Electronics 49(4), 1013–1019 (2003)CrossRefGoogle Scholar
  14. 14.
    Lam, W.-M., Reibman, A.R., Liu, B.: Recovery of lost or erroneously received motion vectors. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 5, pp. 417–420. IEEE (1993)Google Scholar
  15. 15.
    Seth, K., Kamakoti, V., Srinivasan, S.: Efficient Motion Vector Recovery Algorithm for H.264 Using B-Spline Approximation. IEEE Transactions on Broadcasting 56(4), 467–480 (2010)CrossRefGoogle Scholar
  16. 16.
    Kim, D., Yang, S., Jeong, J.: A new temporal error concealment method for H.264 using adaptive block sizes. In: IEEE International Conference on Image Processing, vol. 3, pp. III-928–III-931. IEEE (2005)Google Scholar
  17. 17.
    Xu, Y., Zhou, Y.: H.264 video communication based refined error concealment schemes. IEEE Transactions on Consumer Electronics 50(4), 1135–1141 (2004)CrossRefGoogle Scholar
  18. 18.
    Zheng, J., Chau, L.-P.: Efficient motion vector recovery algorithm for H.264 based on a polynomial model. IEEE Transactions on Multimedia 7(3), 507–513 (2005)CrossRefGoogle Scholar
  19. 19.
    Zhou, J., Yan, B., Gharavi, H.: Efficient Motion Vector Interpolation for Error Concealment of H.264/AVC. IEEE Transactions on Broadcasting 57(1), 75–80 (2011)CrossRefGoogle Scholar
  20. 20.
    Chen, T., Zhang, X., Shi, Y.-Q.: Error concealment using refined boundary matching algorithm. In: International Conference on Information Technology: Research and Education, pp. 55–59. IEEE (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Francisco Aguirre-Ramos
    • 1
  • Claudia Feregrino-Uribe
    • 1
  • Rene Cumplido
    • 1
  1. 1.Coordinación de Ciencias ComputacionalesInstituto Nacional de Astrofísica, Óptica y ElectrónicaTonantzintlaMexico

Personalised recommendations