A Robust Integrated Framework for Segmentation and Tracking

  • Prabhu Kaliamoorthi
  • Ramakrishna Kakarala
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8333)


Recent studies on human motion capture (HMC) indicate the need for a likelihood model that does not rely on a static background. In this paper, we present an approach to human motion capture using a robust version of the oriented chamfer matching scheme. Our method relies on an MRF based segmentation to isolate the subject from the background, and therefore does not require a static background. Furthermore, we use robust statistics and make the likelihood robust to outliers. We compare the proposed approach to the alternative methods used in recent studies in HMC using the Human Eva I dataset. We show that our method performs significantly better than the alternatives despite of not assuming a static background.


Tracking Error Motion Capture Canny Edge Lighting Change Foreground Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Agarwal, A., Triggs, B.: 3d human pose from silhouettes by relevance vector regression. In: CVPR, pp. 882–888 (2004)Google Scholar
  2. 2.
    Andriluka, M., Roth, S., Schiele, B.: Monocular 3d pose estimation and tracking by detection. In: CVPR, pp. 623–630 (2010)Google Scholar
  3. 3.
    Ballan, L., Cortelazzo, G.M.: Marker-less motion capture of skinned models in a four camera set-up using optical flow and silhouettes. In: 3DPVT (June 2008)Google Scholar
  4. 4.
    Bo, L., Sminchisescu, C.: Twin Gaussian processes for structured prediction. IJCV 87, 28–52 (2010)CrossRefGoogle Scholar
  5. 5.
    Boykov, Y., Funka-Lea, G.: Graph cuts and efficient n-d image segmentation. IJCV 70, 109–131 (2006)CrossRefGoogle Scholar
  6. 6.
    Bregler, C., Malik, J.: Tracking people with twists and exponential maps. In: CVPR, pp. 8–15 (1998)Google Scholar
  7. 7.
    Deutscher, J., Reid, I.: Articulated body motion capture by stochastic search. IJCV 61, 185–205 (2005)CrossRefGoogle Scholar
  8. 8.
    Gall, J., Rosenhahn, B., Brox, T., Seidel, H.-P.: Optimization and filtering for human motion capture. IJCV 87, 75–92 (2010)CrossRefGoogle Scholar
  9. 9.
    Gall, J., Stoll, C., de Aguiar, E., Theobalt, C., Rosenhahn, B., Seidel, H.-P.: Motion capture using joint skeleton tracking and surface estimation. In: CVPR, pp. 1746–1753 (2009)Google Scholar
  10. 10.
    Gavrila, D.M., Davis, L.S.: 3-d model-based tracking of humans in action: a multi-view approach. In: CVPR, pp. 73–80 (1996)Google Scholar
  11. 11.
    Kaliamoorthi, P., Kakarala, R.: Directional chamfer matching in 2.5 dimensions. IEEE Signal Processing Letters, 1–4 (in press, 2013)Google Scholar
  12. 12.
    Kaliamoorthi, P., Kakarala, R.: Parametric annealing: A stochastic search method for human pose tracking. Pattern Recognition 46, 1501–1510 (2013)CrossRefGoogle Scholar
  13. 13.
    Kohli, P., Rihan, J., Bray, M., Torr, P.H.: Simultaneous segmentation and pose estimation of humans using dynamic graph cuts. IJCV 79, 285–298 (2008)CrossRefGoogle Scholar
  14. 14.
    Liu, M.-Y., Tuzel, O., Veeraraghavan, A., Chellappa, R.: Fast directional chamfer matching. In: CVPR, pp. 1696–1703 (2010)Google Scholar
  15. 15.
    Mori, G., Malik, J.: Estimating human body configurations using shape context matching. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part III. LNCS, vol. 2352, pp. 666–680. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Pons-Moll, G., Baak, A., Gall, J., Leal-Taixé, L., Müller, M., Seidel, H.-P., Rosenhahn, B.: Outdoor human motion capture using inverse kinematics and von Mises-Fisher sampling. In: ICCV, pp. 1243–1250 (2011)Google Scholar
  17. 17.
    Shotton, J., Blake, A., Cipolla, R.: Multiscale categorical object recognition using contour fragments. TPAMI 30, 1270–1281 (2008)CrossRefGoogle Scholar
  18. 18.
    Sidenbladh, H., Black, M.J., Fleet, D.J.: Stochastic tracking of 3D human figures using 2D image motion. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 702–718. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  19. 19.
    Sigal, L., Balan, A.O., Black, M.J.: Combined discriminative and generative articulated pose and non-rigid shape estimation. In: NIPS, pp. 1337–1344 (2007)Google Scholar
  20. 20.
    Sigal, L., Balan, A.O., Black, M.J.: HumanEva: Synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion. IJCV 87, 4–27 (2010)CrossRefGoogle Scholar
  21. 21.
    Sigal, L., Isard, M., Haussecker, H.W., Black, M.J.: Loose-limbed people: Estimating 3d human pose and motion using non-parametric belief propagation. IJCV 98, 15–48 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Sminchisescu, C., Triggs, B.: Estimating articulated human motion with covariance scaled sampling. IJRR 22, 371–392 (2003)Google Scholar
  23. 23.
    Sudderth, E.B., Mandel, M.I., Freeman, W.T., Willsky, A.S.: Visual hand tracking using nonparametric belief propagation. In: IEEE Workshop on Generative Model Based Vision, p. 189 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Prabhu Kaliamoorthi
    • 1
  • Ramakrishna Kakarala
    • 1
  1. 1.Nanyang Technological UniversitySingapore

Personalised recommendations