TimeViewer, a Tool for Visualizing the Problems of the Background Subtraction

  • Alejandro Sánchez Rodríguez
  • Juan Carlos González Castolo
  • Óscar Déniz Suárez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8333)


This paper is about the TimeViewer tool that facilitates understanding of the most common problems in Background Subtraction. The tool displays patterns of each frame, and through the historical values of the pixels allows for visual identification of changes in a sequence of pixels. The paper demonstrates the usefulness of TimeViewer by showing how it visually presents the most common Background Subtraction problems.


TimeViewer Background Subtraction Change Detection Motion Detection 


  1. 1.
    Radke, R.J., Andra, S., Al-Kofahi, O., Roysam, B.: Image change detection algorithms: a systematic survey. IEEE Transactions on Image Processing 14(3), 294–307 (2005)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Shapiro, L.G., Stockman, G.C.: Computer Vision. Prentice Hall (2001)Google Scholar
  3. 3.
    Benezeth, Y., Jodoin, P.M., Emile, B., Laurent, H., Rosenberger, C.: Comparative study of background subtraction algorithms. Journal of Electronic Imaging 19(3), 033003 (2010)CrossRefGoogle Scholar
  4. 4.
    Pinto, N., Cox, D.D., Dicarlo, J.J.: Why is real-world visual object recognition hard? PLoS Computational Biology 4(1), e27 (2008)Google Scholar
  5. 5.
    Adelson, E.: Mechanisms for motion perception. Optics & Photonics News, 24–30 (August 1991)Google Scholar
  6. 6.
    Cheung, S.C.S.: Robust techniques for background subtraction in urban traffic video. In: Proceedings of SPIE, vol. 5308(1), pp. 881–892 (2004)Google Scholar
  7. 7.
    Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: principles and practice of background maintenance. In: Proceedings of the Seventh IEEE International Conference on Computer Vision 1(c), vol. 1, pp. 255–261 (1999)Google Scholar
  8. 8.
    Bradski, G., Kaehler, A.: Learning OpenCV: Computer vision with the OpenCV library. O’Reilly Media (2008)Google Scholar
  9. 9.
    Tiburzi, F., Escudero, M., Bescos, J., Martinez, J.M.: A ground truth for motion based video-object segmentation. In: 2008 IEEE International Conference on Image Processing, Proceedings of ICIP 2008. Workshop on Multimedia Information Retrieval: New Trends and Challenges, vol. 1, pp. 17–20. IEEE, San Diego (2008)Google Scholar
  10. 10.
    Datasets for the Eleventh IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (2009)Google Scholar
  11. 11.
    Cristani, M., Farenzena, M., Bloisi, D., Murino, V.: Background Subtraction for Automated Multisensor Surveillance: A Comprehensive Review. EURASIP Journal on Advances in Signal Processing 2010, 1–24 (2010)Google Scholar
  12. 12.
    Adelson, E., Bergan, J.R.: Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America A Optics and Image Science 2(2), 284–299 (1985)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Alejandro Sánchez Rodríguez
    • 1
  • Juan Carlos González Castolo
    • 1
  • Óscar Déniz Suárez
    • 2
  1. 1.Centro Universitario de Ciencias Económico AdministrativasUniversidad de GuadalajaraMéxico
  2. 2.Grupo VISILABUniversidad de Castilla La-ManchaEspaña

Personalised recommendations