Advertisement

High Accuracy Ellipse-Specific Fitting

  • Tomonari Masuzaki
  • Yasuyuki Sugaya
  • Kenichi Kanatani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8333)

Abstract

We propose a new method that always fits an ellipse to a point sequence extracted from images. The currently known best ellipse fitting method is hyper-renormalization of Kanatani et al., but it may return a hyperbola when the noise in the data is very large. Our proposed method returns an ellipse close to the point sequence by random sampling of data points. Doing simulation, we show that our method has higher accuracy than the method of Fitzgibbon et al. and the method of Szpak et al., the two methods so far proposed to always return an ellipse.

Keywords

ellipse-specific fitting random sampling hyperaccuracy correction 

References

  1. 1.
    Al-Sharadqah, A., Chernov, N.: A doubly optimal ellipse fit. Computational Statistics and Data Analysis 56(9), 2771–2781 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Chojnacki, W., Brooks, M.J., van den Hengel, A., Gawley, D.: On the fitting of surfaces to data with covariances. IEEE Trans. Patt. Anal. Mach. Intell. 22(11), 1294–1303 (2000)CrossRefGoogle Scholar
  3. 3.
    Fitzgibbon, A., Pilu, M., Fisher, R.B.: Direct least squares fitting of ellipses. Patt. Anal. Mach. Intell. 21(5), 476–480 (1999)CrossRefGoogle Scholar
  4. 4.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  5. 5.
    Ioannou, D., Huda, W., Laine, A.F.: Circle recognition through a 2D Hough transform and radius histogramming. Image Vis. Comput. 17(1), 15–26 (1999)CrossRefGoogle Scholar
  6. 6.
    Kanatani, K.: Geometric Computation for Machine Vision. Oxford University Press, Oxford (1993)zbMATHGoogle Scholar
  7. 7.
    Kanatani, K.: Renormalization for unbiased estimation. In: Pro. 4th Int. Conf. Comput. Vis (ICCV 1993), Berlin, Germany, pp. 599–606 (May 1993)Google Scholar
  8. 8.
    Kanatani, K.: Statistical Optimization for Geometric Computation: Theory and Practice. Elsevier, Amsterdam (1996); reprinted, Dover, York, NY, U.S.A. (2005)zbMATHGoogle Scholar
  9. 9.
    Kanatani, K.: Ellipse fitting with hyperaccuracy. IEICE Trans. Inf. & Syst. E89-D(10), 2653–2660 (2006)Google Scholar
  10. 10.
    Kanatani, K.: Statistical optimization for geometric fitting: Theoretical accuracy analysis and high order error analysis. Int. J. Comput. Vis. 80(2), 167–188 (2008)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Kanatani, K., Ohta, N.: Automatic detection of circular objects by ellipse growing. Int. J. Image Graphics 4(1), 35–50 (2004)CrossRefGoogle Scholar
  12. 12.
    Kanatani, K., Al-Sharadqah, A., Chernov, N., Sugaya, Y.: Renormalization Returns: Hyper-renormalization and Its Applications. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 384–397. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Kanatani, K., Rangarajan, P.: Hyper least squares fitting of circles and ellipses. Comput. Stat. Data Anal. 55(6), 2197–2208 (2011)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Kanatani, K., Rangarajan, P., Sugaya, Y., Niitsuma, H.: HyperLS and its applications. IPSJ Trans. Comput. Vis. Appl. 3, 80–94 (2011)Google Scholar
  15. 15.
    Kanatani, K., Sugaya, Y.: Performance evaluation of iterative geometric fitting algorithms. Comput. Stat. Data Anal. 52(2), 1208–1222 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Kanatani, K., Sugaya, Y.: Unified computation of strict maximum likelihood for geometric fitting. J. Math. Imaging Vis. 38(1), 1–13 (2010)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Kanatani, K., Sugaya, Y.: Hyperaccurate correction of maximum likelihood for geometric estimation. IPSJ Trans. Comput. Vis. Appl. 5, 19–29 (2013)Google Scholar
  18. 18.
    Leedan, Y., Meer, P.: Heteroscedastic regression in computer vision: Problems with bilinear constraint. Int. J. Comput. Vis. 37(2), 127–150 (2000)CrossRefzbMATHGoogle Scholar
  19. 19.
    Matei, J., Meer, P.: Estimation of nonlinear errors-in-variables models for computer vision applications. IEEE Trans. Patt. Anal. Mach. Intell. 28(10), 1537–1552 (2006)CrossRefGoogle Scholar
  20. 20.
    Roth, G., Levine, M.D.: Extracting geometric primitives. CVGIP: Image Understand 58(1), 1–22 (1993)CrossRefGoogle Scholar
  21. 21.
    Roth, G., Levine, M.D.: Geometric primitive extraction using a genetic algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 16(9), 901–905 (1994)CrossRefGoogle Scholar
  22. 22.
    Rosin, P.L., West, G.A.W.: Nonparametric segmentation of curves into various representations. IEEE Trans. Pattern Anal. Mach. Intell. 17(12), 1140–1153 (1995)CrossRefGoogle Scholar
  23. 23.
    Szpak, Z.L., Chojnacki, W., van den Hengel, A.: Guaranteed ellipse fitting with Sampson distance. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp. 87–100. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  24. 24.
    Taubin, G.: Estimation of planar curves, surfaces, and non-planar space curves defined by implicit equations with applications to edge and range image segmentation. IEEE Trans. Patt. Anal. Mach. Intell. 13(11), 1115–1138 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Tomonari Masuzaki
    • 1
  • Yasuyuki Sugaya
    • 1
  • Kenichi Kanatani
    • 2
  1. 1.Toyohashi University of TechnologyJapan
  2. 2.Okayama UniversityJapan

Personalised recommendations