Advertisement

Precise Correction of Lateral Chromatic Aberration in Images

  • Victoria Rudakova
  • Pascal Monasse
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8333)

Abstract

This paper addresses the problem of lateral chromatic aberration correction in images through color planes warping. We aim at high precision (largely sub-pixel) realignment of color channels. This is achieved thanks to two ingredients: high precision keypoint detection, which in our case are disk centers, and more general correction model than what is commonly used in the literature, radial polynomial. Our setup is quite easy to implement, requiring a pattern of black disks on white paper and a single snapshot. We measure the errors in terms of geometry and of color and compare our method to three different software programs. Quantitative results on real images show that our method allows alignment of average 0.05 pixel of color channels and a residual color error divided by a factor 3 to 6.

Keywords

chromatic aberration image warping calibration polynomial model image enhancement 

References

  1. 1.
    Farrar, N.R., Smith, A.H., Busath, D.R., Taitano, D.: In-situ measurement of lens aberrations. In: Optical Microlithography, vol. XIII (2000)Google Scholar
  2. 2.
    Millán, M.S., Otón, J., Pérez-Cabré, E.: Dynamic compensation of chromatic aberration in a programmable diffractive lens. Optics Express 14, 9103–9112 (2006)CrossRefGoogle Scholar
  3. 3.
    Willson, R., Shafer, S.: Active lens control for high precision computer imaging. In: Proc. IEEE ICRA, vol. 3, pp. 2063–2070 (April 1991)Google Scholar
  4. 4.
    Kozubek, M., Matula, P.: An efficient algorithm for measurement and correction of chromatic aberrations in fluorescence microscopy. Journal of Microscopy 200(3), 206–217 (2000)CrossRefGoogle Scholar
  5. 5.
    Boult, T.E., Wolberg, G.: Correcting chromatic aberrations using image warping. In: 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Proceedings CVPR 1992, pp. 684–687. IEEE (1992)Google Scholar
  6. 6.
    Matsuoka, R., Asonuma, K., Takahashi, G., Danjo, T., Hirana, K.: Evaluation of correction methods of chromatic aberration in digital camera images. In: ISPRS Photogrammetric Image Analysis, vol. I-3 (2012)Google Scholar
  7. 7.
    Kaufmann, V., Ladstdter, R.: Elimination of color fringes in digital photographs caused by lateral chromatic aberration. In: CIPA XX International Symposium (2005)Google Scholar
  8. 8.
    Luhmann, T., Hastedt, H., Tecklenburg, W.: Modelling of chromatic aberration for high precision photogrammetry. In: Proc. of the ISPRS Commission V Symp. on Image Engineering and Vision Metrology, vol. 36, pp. 173–178 (2006)Google Scholar
  9. 9.
    Mallon, J., Whelan, P.F.: Calibration and removal of lateral chromatic aberration in images. Pattern Recognition Letters 28(1), 125–135 (2007)CrossRefGoogle Scholar
  10. 10.
    Tang, Z.: High accuracy measurement in 3D stereo reconstruction. PhD thesis, ENS Cachan, France (2011)Google Scholar
  11. 11.
  12. 12.
    Canon: Digital Photo Professional, http://www.canon.com/
  13. 13.
    Dunne, A., Mallon, J.: Jaliko LensTool (2010), http://www.jaliko.com/
  14. 14.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Victoria Rudakova
    • 1
  • Pascal Monasse
    • 1
  1. 1.LIGM (UMR CNRS 8049), Center for Visual Computing, ENPCUniversité Paris-EstMarne-la-ValléeFrance

Personalised recommendations