Generation of a Super-Resolved Stereo Video Using Two Synchronized Videos with Different Magnifications

  • Yusuke Hayashi
  • Norihiko Kawai
  • Tomokazu Sato
  • Miyuki Okumoto
  • Naokazu Yokoya
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8333)


In this paper, we address the problem of changing the optical zoom magnification of stereo video that uses a stereo camera system with 4K or 8K digital cameras. We proposes a solution for generating a zoomed stereo video from a pair of zoomed and non-zoomed videos. To achieve this, part of the non-zoomed video image is isolated and super-resolved, so that the resolution of the image becomes the same as that of the optically-zoomed image. The non-zoomed video is super-resolved by energy minimization using the optically-zoomed image as an example. The effectiveness of this method is validated through experiments.


Stereo video Super-resolution Energy minimization 


  1. 1.
    Mendiburu, B.: 3D Movie Making - Stereoscopic Digital Cinema from Script to Screen. Focal Press (2009)Google Scholar
  2. 2.
    Mita, T.: 2D to 3D image upconversion technology. Journal of Institute of Image Information and Television Engineers 67(2), 116–121 (2013) (in Japanese)Google Scholar
  3. 3.
    Park, S.C., Park, M.K., Kang, M.G.: Super-resolution image reconstruction: A technical overview. IEEE Signal Processing Magazine 20(3), 21–36 (2003)CrossRefGoogle Scholar
  4. 4.
    Iketani, A., Sato, T., Ikeda, S., Kanbara, M., Nakajima, A., Yokoya, N.: Super-resolved video mosaicing for documents by extrinsic camera parameter estimation. In: Proc. Int. Conf. on Computer Vision and Graphics, pp. 327–336 (2004)Google Scholar
  5. 5.
    Irani, M., Peleg, S.: Improving resolution by image registration. Graphical Models and Image Processing 53(3), 231–239 (1991)CrossRefGoogle Scholar
  6. 6.
    Farsiu, S., Robinson, M., Elad, M., Milanfar, P.: Fast and robust multiframe super resolution. IEEE Trans. Image Processing 13(10), 1327–1344 (2004)CrossRefGoogle Scholar
  7. 7.
    Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-based super-resolution. IEEE Computer Graphics and Applications 22, 56–65 (2002)CrossRefGoogle Scholar
  8. 8.
    Begin, I., Ferrie, F.P.: Blind super-resolution using a learning-based approach. In: Proc. Int. Conf. on Pattern Recognition, vol. 2, pp. 85–89 (2004)Google Scholar
  9. 9.
    Hashimoto, A., Nakaya, T., Kuroki, N., Hirose, T., Numa, M.: Binary tree dictionary for learning-based super-resolution. IEICE Trans. D J96-D(2), 357–361 (2013) (in Japanese)Google Scholar
  10. 10.
    Baker, S., Kanade, T.: Hallucinating faces. In: Proc. IEEE Int. Conf. on Automatic Face and Gesture Recognition, pp. 83–88 (2000)Google Scholar
  11. 11.
    Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. Journal of Computer Vision 47(1-3), 7–42 (2002)CrossRefzbMATHGoogle Scholar
  12. 12.
    Hirschmuller, H., Scharstein, D.: Evaluation of cost functions for stereo matching. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 1–8 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Yusuke Hayashi
    • 1
  • Norihiko Kawai
    • 1
  • Tomokazu Sato
    • 1
  • Miyuki Okumoto
    • 2
  • Naokazu Yokoya
    • 1
  1. 1.Graduate School of Information ScienceNara Institute of Science and TechnologyIkomaJapan
  2. 2.Tokuyama College of TechnologyShunanJapan

Personalised recommendations