A Statistical Method for Peak Localization in Hough Space by Analysing Butterflies

  • Zezhong Xu
  • Bok-Suk Shin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8333)


The Hough transform is an efficient method for extracting lines in images. Precision of detection relies on how to find and locate accurately the peak in Hough space after the voting process. In this paper, a statistical method is proposed to improve peak localization by considering quantization error and image noise, and by considering the coordinate origin selection. The proposed peak localization is based on butterfly analysis: statistical standard variances and statistical means are computed and used as parameters of fitting and interpolation processes. We show that accurate peak parameters are achieved. Experimental results compare our results with those provided by other peak detection methods. In summary, we show that the proposed peak localization method for the Hough transform is both accurate and robust in the presence of quantization error and image noise.


Hough transform peak detection mean variance 


  1. 1.
    Albanesi, M.G., Ferretti, M., Rizzo, D.: Benchmarking Hough transform architectures for real-time. Real-Time Imaging 6(2), 155–172 (2000)CrossRefGoogle Scholar
  2. 2.
    Atiquzzaman, M., Akhtar, M.W.: Complete line segment description using the Hough transform. Image Vision Computation 12(5), 267–273 (1994)CrossRefGoogle Scholar
  3. 3.
    Ballard, D.H.: Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13(2), 111–122 (1981)CrossRefzbMATHGoogle Scholar
  4. 4.
    Du, S., Tu, C., van Wyk, B.J., Ochola, E.O., Chen, Z.: Measuring straight line segments using HT butterflies. PLoS ONE 7(3), e33790 (2012)Google Scholar
  5. 5.
    Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves in pictures. Comm. ACM 15(1), 11–15 (1972)CrossRefGoogle Scholar
  6. 6.
    EISATS:enpeda. image sequence analysis test site (2013),
  7. 7.
    Fernandes, L.A.F., Oliveira, M.: Real-time line detection through an improved Hough transform voting scheme. Pattern Recognition 41(1), 299–314 (2008)CrossRefzbMATHGoogle Scholar
  8. 8.
    Furukawa, Y., Shinagawa, Y.: Accurate and robust line segment extraction by analysing distribution around peaks in Hough space. Computer Vision Image Understanding 92(1), 1–25 (2003)CrossRefGoogle Scholar
  9. 9.
    Guerreiro, R.F.C., Aguiar, P.M.Q.: Connectivity-enforcing Hough transform for the robust extraction of line segments. IEEE Trans. Image Processing. 21(12), 4819–4829 (2012)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Guo, S., Pridmore, T., Kong, Y., Zhang, X.: An improved Hough transform voting scheme utilizing surround suppression. Pattern Recognition Letters 30, 1241–1252 (2009)CrossRefGoogle Scholar
  11. 11.
    Hough, P.V.C.: Methods and means for recognizing complex patterns. U.S. Patent 3.069.654 (1962)Google Scholar
  12. 12.
    Illingworth, J., Kittler, J.: The adaptive Hough transform. IEEE Trans. Pattern Analysis Machine Intelligence 9(5), 690–698 (1987)CrossRefGoogle Scholar
  13. 13.
    Ji, J., Chen, G., Sun, L.: A novel Hough transform method for line detection by enhancing accumulator array. Pattern Recognition Letters 32(11), 1503–1510 (2011)CrossRefGoogle Scholar
  14. 14.
    Kiryati, N., Bruckstein, A.M.: Antialiasing the Hough transform. Graphical Models Image Processing 53, 213–222 (1991)CrossRefGoogle Scholar
  15. 15.
    Kiryati, N., Eldar, Y., Bruckstein, A.M.: A probabilistic Hough transform. Pattern Recognition 24(4), 303–316 (1991)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Li, H., Lavin, M.A., LeMaster, R.J.: Fast Hough transform: A hierarchical approach. Computer Vision Graphics Image Process 36(2-3), 139–161 (1986)CrossRefGoogle Scholar
  17. 17.
    Leavers, V.F., Sandler, M.B.: An efficient Radon transform. In: Int. Conf. Pattern Recognition, pp. 380–389 (1988)Google Scholar
  18. 18.
    Niblack, W., Petkovic, D.: On improving the accuracy of the Hough transform: Theory, simulation, and experiments. In: IEEE Conf. Computer Vision Pattern Recognition, pp. 574–579 (1988)Google Scholar
  19. 19.
    Niblack, W., Petkovic, D.: On improving the accuracy of the Hough transform. Machine Vision Applications 3, 87–106 (1990)CrossRefGoogle Scholar
  20. 20.
    Palmer, P.L., Kittler, J., Petrou, M.: An optimizing line finder using a Hough transform algorithm. Computer Vision Image Understanding 67(1), 1–23 (1997)CrossRefGoogle Scholar
  21. 21.
    Shin, B.-S., Xu, Z., Klette, R.: Visual lane analysis - a concise review. Technical report MItech-TR-84, The University of Auckland (2013)Google Scholar
  22. 22.
    Tsai, D.M.: An improved generalized Hough transform for the recognition of overlapping objects. Image Vision Computing 15, 877–888 (1997)CrossRefGoogle Scholar
  23. 23.
    Tu, C., Du, S., van Wyk, B.J., Djouani, K., Hamam, Y.: High resolution Hough transform based on butterfly self-similarity. Electronics Letters 47(25), 1360–1361 (2011)CrossRefGoogle Scholar
  24. 24.
    Xu, L., Oja, E., Kultanen, P.: A new curve detection method: Randomized Hough transform (RHT). Pattern Recognition Letters 11(5), 331–338 (1990)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Zezhong Xu
    • 1
    • 2
  • Bok-Suk Shin
    • 1
  1. 1.Department of Computer ScienceThe University of AucklandAucklandNew Zealand
  2. 2.College of Computer Information EngineeringChangzhou Institute of TechnologyChangzhouChina

Personalised recommendations