Skip to main content

Dance Lessons for Proteins: The Dynamics and Thermodynamics of a Sodium/Aspartate Symporter

  • Chapter
  • First Online:
Membrane Transport Mechanism

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 17))

Abstract

Secondary active transporters harvest the energy of the ionic gradients to drive concentrative uptake of their substrates. This process entails a series of protein conformational transitions that are coupled to binding and unbinding of ions and substrates on the extracellular and intracellular sides of the membrane. Over the last decade, crystallography has provided a growing number of structural snapshots of the transport cycle for several ion-driven transporters. Already these structures, although intrinsically static, have revealed a remarkable plasticity encoded in the architecture of these proteins. Because internal dynamics is an essential feature of transporters, it is necessary to complement crystallographic studies with other techniques that provide information on the ensemble properties of these proteins as well as on the conformational dynamics of individual molecules. Here, we will discuss the emerging approaches to obtain thermodynamic and dynamic information on transporters using a sodium/aspartate symporter from Pyrococcus horikoshii, GltPh, as a model system. GltPh is a bacterial homologue of the mammalian glutamate transporters, for which crystal structures of several states have been determined, providing a framework for further mechanistic studies. We will discuss how within this system the equilibrium and kinetic studies based on the isothermal titration calorimetry, fluorescence, and electron paramagnetic resonance spectroscopy inform us on the energetic relationship between the key functional states, and mechanisms of coupling between transport cycle and ionic gradients. We will further describe how single molecule studies open doors to a detailed characterization of the timing and order of the conformational transitions underlying transport processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akyuz N, Altman R et al (2013) Transport dynamics of a glutamate transporter homologue. Nature 502(7469):114–118

    Article  CAS  PubMed  Google Scholar 

  • Andersen OS, Koeppe RE 2nd (2007) Bilayer thickness and membrane protein function: an energetic perspective. Annu Rev Biophys Biomol Struct 36:107–130

    Article  CAS  PubMed  Google Scholar 

  • Arriza JL, Eliasof S et al (1997) Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Acad Sci U S A 94(8):4155–4160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbour B, Brew H et al (1988) Electrogenic glutamate uptake in glial cells is activated by intracellular potassium. Nature 335(6189):433–435

    Article  CAS  PubMed  Google Scholar 

  • Bastug T, Heinzelmann G et al (2012) Position of the third Na+ site in the aspartate transporter GltPh and the human glutamate transporter, EAAT1. PLoS One 7(3):e33058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bendahan A, Armon A et al (2000) Arginine 447 plays a pivotal role in substrate interactions in a neuronal glutamate transporter. J Biol Chem 275(48):37436–37442

    Article  CAS  PubMed  Google Scholar 

  • Borre L, Kavanaugh MP et al (2002) Dynamic equilibrium between coupled and uncoupled modes of a neuronal glutamate transporter. J Biol Chem 277(16):13501–13507

    Article  CAS  PubMed  Google Scholar 

  • Boudker O, Verdon G (2010) Structural perspectives on secondary active transporters. Trends Pharmacol Sci 31(9):418–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boudker O, Ryan RM et al (2007) Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter. Nature 445(7126):387–393

    Article  CAS  PubMed  Google Scholar 

  • Bouvier M, Szatkowski M et al (1992) The glial cell glutamate uptake carrier countertransports pH-changing anions. Nature 360(6403):471–474

    Article  CAS  PubMed  Google Scholar 

  • Choi DW (1994) Calcium and excitotoxic neuronal injury. Ann N Y Acad Sci 747:162–171

    Article  CAS  PubMed  Google Scholar 

  • Claxton DP, Quick M et al (2010) Ion/substrate-dependent conformational dynamics of a bacterial homolog of neurotransmitter:sodium symporters. Nat Struct Mol Biol 17(7):822–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crisman TJ, Qu S et al (2009) Inward-facing conformation of glutamate transporters as revealed by their inverted-topology structural repeats. Proc Natl Acad Sci U S A 106(49):20752–20757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65(1):1–105

    Article  CAS  PubMed  Google Scholar 

  • DeChancie J, Shrivastava IH et al (2010) The mechanism of substrate release by the aspartate transporter GltPh: insights from simulations. Mol Biosyst 7(3):832–842

    Article  PubMed  PubMed Central  Google Scholar 

  • Eliasof S, Jahr CE (1996) Retinal glial cell glutamate transporter is coupled to an anionic conductance. Proc Natl Acad Sci U S A 93(9):4153–4158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ewers D, Becher T et al (2013) Induced fit substrate binding to an archeal glutamate transporter homologue. Proc Natl Acad Sci U S A 110(30):12486–12491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faham S, Watanabe A et al (2008) The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science 321(5890):810–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fairman WA, Vandenberg RJ et al (1995) An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature 375(6532):599–603

    Article  CAS  PubMed  Google Scholar 

  • Fischbarg J (1988) On the possible permeation of water across the glucose transporter. Mol Cell Biochem 82(1–2):107–111

    CAS  PubMed  Google Scholar 

  • Focke PJ, Moenne-Loccoz P et al (2011) Opposite movement of the external gate of a glutamate transporter homolog upon binding cotransported sodium compared with substrate. J Neurosci 31(16):6255–6262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forrest LR, Rudnick G (2009) The rocking bundle: a mechanism for ion-coupled solute flux by symmetrical transporters. Physiology (Bethesda) 24:377–386

    Article  CAS  Google Scholar 

  • Gendreau S, Voswinkel S et al (2004) A trimeric quaternary structure is conserved in bacterial and human glutamate transporters. J Biol Chem 279(38):39505–39512

    Article  CAS  PubMed  Google Scholar 

  • Georgieva ER, Borbat PP et al (2013) Conformational ensemble of the sodium-coupled aspartate transporter. Nat Struct Mol Biol 20(2):215–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grewer C, Balani P et al (2005) Individual subunits of the glutamate transporter EAAC1 homotrimer function independently of each other. Biochemistry 44(35):11913–11923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groeneveld M, Slotboom DJ (2007) Rigidity of the subunit interfaces of the trimeric glutamate transporter GltT during translocation. J Mol Biol 372(3):565–570

    Article  CAS  PubMed  Google Scholar 

  • Groeneveld M, Slotboom DJ (2010) Na(+):aspartate coupling stoichiometry in the glutamate transporter homologue Glt(Ph). Biochemistry 49(17):3511–3513

    Article  CAS  PubMed  Google Scholar 

  • Grunewald M, Bendahan A et al (1998) Biotinylation of single cysteine mutants of the glutamate transporter GLT-1 from rat brain reveals its unusual topology. Neuron 21(3):623–632

    Article  CAS  PubMed  Google Scholar 

  • Hanelt I, Wunnicke D et al (2013) Conformational heterogeneity of the aspartate transporter Glt(Ph). Nat Struct Mol Biol 20(2):210–214

    Article  PubMed  Google Scholar 

  • Holley DC, Kavanaugh MP (2009) Interactions of alkali cations with glutamate transporters. Philos Trans R Soc Lond B Biol Sci 364(1514):155–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Z, Tajkhorshid E (2008) Dynamics of the extracellular gate and ion-substrate coupling in the glutamate transporter. Biophys J 95(5):2292–2300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Z, Tajkhorshid E (2010) Identification of the third Na+ site and the sequence of extracellular binding events in the glutamate transporter. Biophys J 99(5):1416–1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jardetzky O (1966) Simple allosteric model for membrane pumps. Nature 211(5052):969–70

    Article  CAS  PubMed  Google Scholar 

  • Kanner BI, Sharon I (1978) Active transport of l-glutamate by membrane vesicles isolated from rat brain. Biochemistry 17(19):3949–3953

    Article  CAS  PubMed  Google Scholar 

  • Kavanaugh MP (1998) Neurotransmitter transport: models in flux. Proc Natl Acad Sci U S A 95(22):12737–12738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch HP, Larsson HP (2005) Small-scale molecular motions accomplish glutamate uptake in human glutamate transporters. J Neurosci 25(7):1730–1736

    Article  CAS  PubMed  Google Scholar 

  • Koch HP, Hubbard JM et al (2007) Voltage-independent sodium-binding events reported by the 4B–4C loop in the human glutamate transporter excitatory amino acid transporter 3. J Biol Chem 282(34):24547–24553

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurthy H, Piscitelli CL et al (2009) Unlocking the molecular secrets of sodium-coupled transporters. Nature 459(7245):347–355

    Article  CAS  PubMed  Google Scholar 

  • Larsson HP, Wang X et al (2010) Evidence for a third sodium-binding site in glutamate transporters suggests an ion/substrate coupling model. Proc Natl Acad Sci U S A 107(31):13912–13917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau A, Tymianski M (2010) Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch 460(2):525–542

    Article  CAS  PubMed  Google Scholar 

  • Leary GP, Stone EF et al (2007) The glutamate and chloride permeation pathways are colocalized in individual neuronal glutamate transporter subunits. J Neurosci 27(11):2938–2942

    Article  CAS  PubMed  Google Scholar 

  • Lee SG, Su ZZ et al (2008) Mechanism of ceftriaxone induction of excitatory amino acid transporter-2 expression and glutamate uptake in primary human astrocytes. J Biol Chem 283(19):13116–13123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Shaikh SA et al (2013) Transient formation of water-conducting states in membrane transporters. Proc Natl Acad Sci U S A 110:7696–7701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majumdar DS, Smirnova I et al (2007) Single-molecule FRET reveals sugar-induced conformational dynamics in LacY. Proc Natl Acad Sci U S A 104(31):12640–12645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson PJ, Dean GE et al (1983) Hydrogen ion cotransport by the renal brush border glutamate transporter. Biochemistry 22(23):5459–5463

    Article  CAS  PubMed  Google Scholar 

  • Oldham ML, Chen J (2011) Crystal structure of the maltose transporter in a pretranslocation intermediate state. Science 332(6034):1202–1205

    Article  CAS  PubMed  Google Scholar 

  • Perez C, Koshy C et al (2012) Alternating-access mechanism in conformationally asymmetric trimers of the betaine transporter BetP. Nature 490(7418):126–130

    Article  CAS  PubMed  Google Scholar 

  • Picaud SA, Larsson HP et al (1995) Glutamate-gated chloride channel with glutamate-transporter-like properties in cone photoreceptors of the tiger salamander. J Neurophysiol 74(4):1760–1771

    CAS  PubMed  Google Scholar 

  • Ressl S, Terwisscha van Scheltinga AC et al (2009) Molecular basis of transport and regulation in the Na(+)/betaine symporter BetP. Nature 458(7234):47–52

    Article  CAS  PubMed  Google Scholar 

  • Reyes N, Ginter C et al (2009) Transport mechanism of a bacterial homologue of glutamate transporters. Nature 462(7275):880–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reyes N, Oh S et al (2013) Binding thermodynamics of a glutamate transporter homologue. Nat Struct Mol Biol 20(5):634–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosental N, Gameiro A et al (2011) A conserved aspartate residue located at the extracellular end of the binding pocket controls cation interactions in brain glutamate transporters. J Biol Chem 286(48):41381–41390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothstein JD, Dykes-Hoberg M et al (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16(3):675–686

    Article  CAS  PubMed  Google Scholar 

  • Rothstein JD, Patel S et al (2005) Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433(7021):73–77

    Article  CAS  PubMed  Google Scholar 

  • Ryan RM, Mindell JA (2007) The uncoupled chloride conductance of a bacterial glutamate transporter homolog. Nat Struct Mol Biol 14(5):365–371

    Article  CAS  PubMed  Google Scholar 

  • Ryan RM, Vandenberg RJ (2002) Distinct conformational states mediate the transport and anion channel properties of the glutamate transporter EAAT-1. J Biol Chem 277(16):13494–13500

    Article  CAS  PubMed  Google Scholar 

  • Ryan RM, Mitrovic AD et al (2004) The chloride permeation pathway of a glutamate transporter and its proximity to the glutamate translocation pathway. J Biol Chem 279(20):20742–20751

    Article  CAS  PubMed  Google Scholar 

  • Ryan RM, Compton EL et al (2009) Functional characterization of a Na+-dependent aspartate transporter from Pyrococcus horikoshii. J Biol Chem 284(26):17540–17548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiemann O, Weber A et al (2003) Nanometer distance measurements on RNA using PELDOR. J Am Chem Soc 125(12):3434–3435

    Article  CAS  PubMed  Google Scholar 

  • Seal RP, Leighton BH et al (1998) Transmembrane topology mapping using biotin-containing sulfhydryl reagents. Methods Enzymol 296:318–331

    Article  CAS  PubMed  Google Scholar 

  • Seal RP, Shigeri Y et al (2001) Sulfhydryl modification of V449C in the glutamate transporter EAAT1 abolishes substrate transport but not the substrate-gated anion conductance. Proc Natl Acad Sci U S A 98(26):15324–15329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimamura T, Weyand S et al (2010) Molecular basis of alternating access membrane transport by the sodium-hydantoin transporter Mhp1. Science 328(5977):470–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shlaifer I, Kanner BI (2007) Conformationally sensitive reactivity to permeant sulfhydryl reagents of cysteine residues engineered into helical hairpin 1 of the glutamate transporter GLT-1. Mol Pharmacol 71(5):1341–1348

    Article  CAS  PubMed  Google Scholar 

  • Shrivastava IH, Jiang J et al (2008) Time-resolved mechanism of extracellular gate opening and substrate binding in a glutamate transporter. J Biol Chem 283(42):28680–28690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slotboom DJ, Sobczak I et al (1999) A conserved serine-rich stretch in the glutamate transporter family forms a substrate-sensitive reentrant loop. Proc Natl Acad Sci U S A 96(25):14282–14287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stolzenberg S, Khelashvili G et al (2012) Structural intermediates in a model of the substrate translocation path of the bacterial glutamate transporter homologue GltPh. J Phys Chem B 116(18):5372–5383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao Z, Gameiro A et al (2008) Thallium ions can replace both sodium and potassium ions in the glutamate transporter excitatory amino acid carrier 1. Biochemistry 47(48):12923–12930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao Z, Rosental N et al (2010) Mechanism of cation binding to the glutamate transporter EAAC1 probed with mutation of the conserved amino acid residue Thr101. J Biol Chem 285(23):17725–17733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teichman S, Kanner BI (2007) Aspartate-444 is essential for productive substrate interactions in a neuronal glutamate transporter. J Gen Physiol 129(6):527–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teichman S, Qu S et al (2012) Conserved asparagine residue located in binding pocket controls cation selectivity and substrate interactions in neuronal glutamate transporter. J Biol Chem 287(21):17198–17205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandenberg RJ, Handford CA et al (2011) Water and urea permeation pathways of the human excitatory amino acid transporter EAAT1. Biochem J 439(2):333–340

    Article  CAS  PubMed  Google Scholar 

  • Verdon G, Boudker O (2012) Crystal structure of an asymmetric trimer of a bacterial glutamate transporter homolog. Nat Struct Mol Biol 19(3):355–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veruki ML, Morkve SH et al (2006) Activation of a presynaptic glutamate transporter regulates synaptic transmission through electrical signaling. Nat Neurosci 9(11):1388–1396

    Article  CAS  PubMed  Google Scholar 

  • Wadiche JI, Amara SG et al (1995a) Ion fluxes associated with excitatory amino acid transport. Neuron 15(3):721–728

    Article  CAS  PubMed  Google Scholar 

  • Wadiche JI, Arriza JL et al (1995b) Kinetics of a human glutamate transporter. Neuron 14(5):1019–1027

    Article  CAS  PubMed  Google Scholar 

  • Watzke N, Bamberg E et al (2001) Early intermediates in the transport cycle of the neuronal excitatory amino acid carrier EAAC1. J Gen Physiol 117(6):547–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss S (1999) Fluorescence spectroscopy of single biomolecules. Science 283(5408):1676–1683

    Article  CAS  PubMed  Google Scholar 

  • Weyand S, Shimamura T et al (2008) Structure and molecular mechanism of a nucleobase-cation-symport-1 family transporter. Science 322(5902):709–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashita A, Singh SK et al (2005) Crystal structure of a bacterial homologue of Na+/Cl–dependent neurotransmitter transporters. Nature 437(7056):215–223

    Article  CAS  PubMed  Google Scholar 

  • Yernool D, Boudker O et al (2003) Trimeric subunit stoichiometry of the glutamate transporters from Bacillus caldotenax and Bacillus stearothermophilus. Biochemistry 42(44):12981–12988

    Article  CAS  PubMed  Google Scholar 

  • Yernool D, Boudker O et al (2004) Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431(7010):811–818

    Article  CAS  PubMed  Google Scholar 

  • Yi JH, Hazell AS (2006) Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury. Neurochem Int 48(5):394–403

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, He X et al (2006) Structure of the multidrug transporter EmrD from Escherichia coli. Science 312(5774):741–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zerangue N, Kavanaugh MP (1996) Flux coupling in a neuronal glutamate transporter. Nature 383(6601):634–637

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Grewer C (2007) The sodium-coupled neutral amino acid transporter SNAT2 mediates an anion leak conductance that is differentially inhibited by transported substrates. Biophys J 92(7):2621–2632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Tao Z et al (2007) Transport direction determines the kinetics of substrate transport by the glutamate transporter EAAC1. Proc Natl Acad Sci U S A 104(46):18025–18030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Terry D et al (2010) Single-molecule dynamics of gating in a neurotransmitter transporter homologue. Nature 465(7295):188–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Terry DS et al (2011) Substrate-modulated gating dynamics in a Na+-coupled neurotransmitter transporter homologue. Nature 474(7349):109–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Boudker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boudker, O., Akyuz, N. (2014). Dance Lessons for Proteins: The Dynamics and Thermodynamics of a Sodium/Aspartate Symporter. In: Krämer, R., Ziegler, C. (eds) Membrane Transport Mechanism. Springer Series in Biophysics, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53839-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53839-1_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53838-4

  • Online ISBN: 978-3-642-53839-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics