Skip to main content

Drug Delivery Systems That Eradicate and/or Prevent Biofilm Formation

  • Chapter
  • First Online:
Antibiofilm Agents

Part of the book series: Springer Series on Biofilms ((BIOFILMS,volume 8))

Abstract

The capability to form biofilms contributes significantly to the pathogenesis of microbial infections by various mechanisms including a decrease in susceptibility to antimicrobial agents. Over the past few years therapy against biofilm has undergone a revolutionary shift to effectively kill biofilm-producing microorganisms. With the advancement of biotechnology, emphasis has been made to effectively deliver antimicrobial agents against biofilm. In this regard, particulate materials have attracted enormous attention as drug delivery systems, not only for the controlled release of drugs but also because of the rapid development of synthetic methods for controlling morphology and particle size from the micro to the nanoscale. For targeted drug delivery a number of constituents in the process of biofilm formation have been studied as targets for novel drug delivery technologies. In this chapter, the contribution of various drug delivery systems made up of amphiphilic molecules (liposome, niosomes), polymer (PLGA), chitin (chitosan), and dendrimer, and their potential to deliver antimicrobial agents against biofilm is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ABELCET-(Amphotericin-b, Dimyristoylphosphatidylcholine, dl- and Dimyristoylphosphatidylglycerol, dl- injection). Enzon Pharmaceuticals, Bridgewater, NJ

    Google Scholar 

  • Ahmed K, Gribbon PN, Jones MN (2002) The application of confocal microscopy to the study of liposome adsorption onto bacterial biofilms. J Liposome Res 12(4):285–300

    Article  CAS  PubMed  Google Scholar 

  • Alam M, Dwivedi V, Khan AA, Mohammad O (2009) Efficacy of niosomal formulation of diallyl sulfide against experimental candidiasis in Swiss albino mice. Nanomedicine 4(7):713–724

    Article  CAS  PubMed  Google Scholar 

  • Alhajlan M, Alhariri M, Omri A (2013) Efficacy and safety of liposomal clarithromycin and its effect on Pseudomonas aeruginosa virulence factors. Antimicrob Agents Chemother 57(6):2694–2704

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alipour M, Halwani M, Omri A, Suntres ZE (2008) Antimicrobial effectiveness of liposomal polymyxin B against resistant Gram-negative bacterial strains. Int J Pharm 355(1–2):293–298

    Article  CAS  PubMed  Google Scholar 

  • Alipour M, Suntres ZE, Lafrenie RM, Omri A (2010) Attenuation of Pseudomonas aeruginosa virulence factors and biofilms by co-encapsulation of bismuth–ethanedithiol with tobramycin in liposomes. J Antimicrob Chemother 65:684–693

    Article  CAS  PubMed  Google Scholar 

  • Alphandary HP, Andremont A, Couvreur P (2000) Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications. Int J Antimicrob Agents 13:155–168

    Article  Google Scholar 

  • AMPHOTEC-Distributed by Three Rivers Pharmaceuticals, LLC, Warrendale, PA. (US Patent Numbers 4,822,777; 5,032,582; 5,194,266; 5,077,057)

    Google Scholar 

  • Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13:238–252

    Article  CAS  PubMed  Google Scholar 

  • Bilati U, Allemann E, Doelker E (2005) Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur J Pharm Sci 24:67–75

    Article  CAS  PubMed  Google Scholar 

  • Brewer JM, Alexander J (1994) Studies on the adjuvant activity of non-ionic surfactant vesicles: adjuvant-driven IgG2a production independent of MHC control. Vaccine 12(7):613–619

    Article  CAS  PubMed  Google Scholar 

  • Buckler BS, Sams RN, Goei VL, Krishnan KR, Bemis MJ, Parker DP, Murray DL (2008) Treatment of central venous catheter fungal infection using liposomal amphotericin-B lock therapy. Pediatr Infect Dis J 27:762–764

    Article  PubMed  Google Scholar 

  • Buhleier E, Wehner W, Vogtle F (1978) Cascade and nonskid-chainlike synthesis of molecular cavity topologies. Synthesis 1978:155–158

    Article  Google Scholar 

  • Catuogno C, Jones MN (2003) The antibacterial properties of solid supported liposomes on Streptococcus oralis biofilms. Int J Pharm 257:125–140

    Article  CAS  PubMed  Google Scholar 

  • Cheng FY, Wang SP, Su CH, Tsai TL, Wu PC, Shieh DB, Chen JH, Hsieh PC, Yeh CS (2008) Stabilizer-free poly (lactide-co-glycolide) nanoparticles for multimodal biomedical probes. Biomaterials 29:2104–2112

    Article  CAS  PubMed  Google Scholar 

  • Cheow WS, Chang MW, Hadinoto K (2010) Antibacterial efficacy of inhalable levofloxacin-loaded polymeric nanoparticles against E. coli biofilm cells: the effect of antibiotic release profile. Pharm Res 27:1597–1609

    Article  CAS  PubMed  Google Scholar 

  • Crommelin DJA, Schreier H (1994) Liposomes. In: Kreuter J (ed) Colloidal drug delivery systems. Dekker, New York, pp 73–190

    Google Scholar 

  • Daniel M, Chessman R, Al-Zahid S, Richards B, Rahman C, Ashraf W, McLaren J, Cox H, Qutachi O, Fortnum H, Fergie N, Shakesheff K, Birchall JP, Bayston RR (2012) Biofilm eradication with biodegradable modified-release antibiotic pellets: a potential treatment for glue ear. Arch Otolaryngol Head Neck Surg 138(10):942–949

    Article  PubMed  Google Scholar 

  • Denning DW, Lee JY, Hostetler JS, Pappas P, Kauffman CA et al (1994) NIAID Mycoses Study Group multicenter trial of oral itraconazole therapy for invasive aspergillosis. Am J Med 97:135–144

    Article  CAS  PubMed  Google Scholar 

  • DiTizio V, Ferguson GW, Mittelman MW, Khoury AE, Bruce AW, DiCosmo FA (1998) Liposomal hydrogel for the prevention of bacterial adhesion to catheters. Biomaterials 19:1877–1884

    Article  CAS  PubMed  Google Scholar 

  • Duncan R (2003) The dawning era of polymer therapeutics. Nat Rev Drug Discov 2:347–360

    Article  CAS  PubMed  Google Scholar 

  • Duncan R (2006) Polymer conjugates for drug targeting: from inspired to inspiration. J Drug Target 14:333–335

    Article  CAS  PubMed  Google Scholar 

  • Duzgunes N, Pretzer E, Simoes S, Slepushkin V, Konopka K, Flasher D, de Lima MC (1999) Liposome-mediated delivery of antiviral agents to human immunodeficiency virus-infected cells. Mol Membr Biol 16(1):111–118

    Article  CAS  PubMed  Google Scholar 

  • Emma MVJ, Shanika AC, Elena K, Lieven B, Rameshwar UK, Martina C, Kai-Malte B, Stephen PD, Miguel C, Paul W, Remy L, Cristina N, Frank R, Karl-Erich J, Tamis D, Jean-Louis R (2008) Inhibition and dispersion of Pseudomonas aeruginosa biofilms by glycopeptide dendrimers targeting the fucose-specific lectin LecB. Chem Biol 15:1249–1257

    Article  Google Scholar 

  • Fang JY, Hong CT, Chiu WT (2001) Effect of liposomes and niosomes on skin permeation of enoxacin. Int J Pharm 219:61–72

    Article  CAS  PubMed  Google Scholar 

  • Finelli A, Burrows LL, DiCosmo FA, DiTizio V, Sinnadurai S, Oreopoulos DG, Khoury AE (2002) Colonization-resistant antimicrobial-coated peritoneal dialysis catheters: evaluation in a newly developed rat model of persistent Pseudomonas aeruginosa peritonitis. Perit Dial Int 22:27–31

    PubMed  Google Scholar 

  • Florence AT (2005) Dendrimers: a versatile targeting platform. Adv Drug Deliv 57:2104–2105

    Article  CAS  Google Scholar 

  • Gillies ER, Frechet JM (2005) Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 10:35–43

    Article  CAS  PubMed  Google Scholar 

  • Govender T, Stolnik S, Garnett MC, Illum L, Davis SS (1999) PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J Control Release 52:171–185

    Article  Google Scholar 

  • Grayson SM, Frechet JM (2001) Convergent dendrons and dendrimers: from synthesis to applications. Chem Rev 101:3819–3868

    Article  CAS  PubMed  Google Scholar 

  • Gupta RK, Varanelli CL, Griffin P, Wallach DFH, Siber GR (1996) Adjuvant properties of non-phospholipid liposomes (Novasomes®) in experimental animals for human vaccine antigens. Vaccine 14(3):219–225

    Article  CAS  PubMed  Google Scholar 

  • Halwani M, Yebio B, Suntres ZE, Alipour M, Azghani AO, Omri A (2008) Co-encapsulation of gallium with gentamicin in liposomes enhances antimicrobial activity of gentamicin against Pseudomonas aeruginosa. J Antimicrob Chemother 62:1291–1297

    Article  CAS  PubMed  Google Scholar 

  • Halwani M, Hebert S, Suntres ZE, Lafrenie RM, Azghani AO, Omri A (2009) Bismuth–thiol incorporation enhances biological activities of liposomal tobramycin against bacterial biofilm and quorum sensing molecules production by Pseudomonas aeruginosa. Int J Pharm 373(1–2):141–146

    Article  CAS  PubMed  Google Scholar 

  • Hou S, Zhou C, Liu Z, Young AW, Shi Z, Ren D, Kallenbach NR (2009) Antimicrobial dendrimer active against Escherichia coli biofilms. Bioorg Med Chem Lett 19:5478–5481

    Article  CAS  PubMed  Google Scholar 

  • Huang M, Khort LLY (2004) Uptake and cytotoxicity of chitosan molecule and nanoparticles: effect of molecular weight and degree of deacetylation. Pharm Res 21:344–353

    Article  CAS  PubMed  Google Scholar 

  • Iannitelli A, Grande R, Di Stefano A, Di Giulio M, Sozio P, Bessa LJ, Laserra S, Paolini C, Protasi F, Cellini L (2011) Potential antibacterial activity of carvacrol-loaded poly(DL-lactide-co-glycolide) (PLGA) nanoparticles against microbial biofilm. Int J Mol Sci 12(8):5039–5051

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Immordino ML, Dosio F, Cattel L (2006) Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 1:297–315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Israelachvili JN (1991) Intermolecular and surface forces. Academic, London

    Google Scholar 

  • Johnson EM, Ojwang JO, Szekely A, Wallace TL, Warnock DW (1998) Comparison of in vitro antifungal activities of free and liposome-encapsulated nystatin with those of four amphotericin B formulations. Antimicrob Agents Chemother 42(6):1412–1416

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jones MN (2009) Use of liposomes to deliver bactericides to bacterial biofilms. Methods Enzymol 391:211–228

    Article  Google Scholar 

  • Kashi TS, Eskandarion S, Esfandyari-Manesh M (2012) Improved drug loading and antibacterial activity of minocycline-loaded PLGA nanoparticles prepared by solid/oil/water ion pairing method. Int J Nanomedicine 7:221–234

    PubMed Central  PubMed  Google Scholar 

  • Katherine RZ, Jessica DS, Menachem E (2012) Biodegradable polymer (PLGA) coatings featuring cinnamaldehyde and carvacrol mitigate biofilm formation. Langmuir 28:13993–13999

    Article  Google Scholar 

  • Kazi KM, Mandal AS, Biswas N, Guha A, Chatterjee S, Behera M, Kuotsu K (2010) Niosome: a future of targeted drug delivery systems. J Adv Pharm Technol Res 1(4):374–380

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim HJ, Jones MN (2004) The delivery of benzyl penicillin to Staphylococcus aureus biofilms by use of liposomes. J Liposome Res 14:123–139

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Michael Gias EL, Jones MN (1999) The adsorption of cationic liposomes to Staphylococcus aureus biofilms. Colloids Surf A Physicochem Eng Aspects 149:561–570

    Article  CAS  Google Scholar 

  • Lasic DD (1993) Liposomes, from physics to applications. Elsevier, Amsterdam

    Google Scholar 

  • Lipowsky R (1995) Generic interactions of flexible membranes. Elsevier, Amsterdam

    Google Scholar 

  • Lu JM, Wang X, Marin-Muller C (2009) Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn 9:325–341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ma T, Shang BC, Tang H, Zhou TH, Xu GL, Li HL, Chen QH, Xu YQ (2011) Nano-hydroxyapatite/chitosan/konjac glucomannan scaffolds loaded with cationic liposomal vancomycin: preparation, in vitro release and activity against Staphylococcus aureus biofilms. J Biomater Sci Polym Ed 22(12):1669–1681

    Article  CAS  PubMed  Google Scholar 

  • Martin GP, Lloyd AW (1992) Basic principles of liposomes for drug use. In: Braun-Falco O et al (eds) Liposome dermatics, Griesbach conference. Springer, Berlin, pp 20–26

    Chapter  Google Scholar 

  • Maruyama K, Kennel SJ, Huang L (1990) Lipid composition is important for highly efficient target binding and retention of immunoliposomes. Proc Natl Acad Sci USA 87:5744–5748

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meers P, Neville M, Malinin V, Scotto AW, Sardaryan G, Kurumunda R, Mackinson GJ, Fisher S, Perkins WR (2008) Biofilm penetration, triggered release and in vivo activity of inhaled liposomal amikacin in chronic Pseudomonas aeruginosa lung infections. J Antimicrob Chemother 61:859–868

    Article  CAS  PubMed  Google Scholar 

  • Meunier F, Prentice HG, Ringdén O (1991) Liposomal amphotericin B (AmBisome): safety data from a phase II/III clinical trial. J Antimicrob Chemother 28:B83–B91

    Article  Google Scholar 

  • Mohammadi G, Valizadeh H, Barzegar-Jalali M (2010) Development of azithromycin-PLGA nanoparticles: physicochemical characterization and antibacterial effect against Salmonella typhi. Colloids Surf B: Biointerfaces 80:34–39

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee B, Patra B, Layek B, Mukherjee A (2007) Sustained release of acyclovir from nano-liposomes and nano-niosomes: an in vitro study. Int J Nanomedicine 2(2):213–225

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mullertz A, Ogbonna A, Ren S, Rades T (2010) New perspectives on lipid and surfactant based drug delivery systems for oral delivery of poorly soluble drugs. J Pharm Pharmacol 62(11):1622–1636

    Article  CAS  PubMed  Google Scholar 

  • Nahla AM, Hanaa AM, Mona TA (2012) Bactericidal activity of various antibiotics versus tetracycline-loaded chitosan microspheres against Pseudomonas aeruginosa biofilms. Afr J Microbiol Res 6(25):5387–5398

    Google Scholar 

  • Nakase M, Inui M, Okumura K, Kamei T, Nakamura S, Tagawa T (2005) p53 gene therapy of human osteosarcoma using a transferrin-modified cationic liposome. Mol Cancer Ther 4(4):625–631

    Article  CAS  PubMed  Google Scholar 

  • Namasivayam SKR, Roy EA (2013) Enhanced antibiofilm activity of chitosan stabilized chemogenic silver nanoparticles against Escherichia coli. Int J Sci Res Publ 3:1–9

    Google Scholar 

  • Norris P, Noble M, Francolini I, Vinogradov AM, Stewart PS, Ratner BD, Costerton JW, Stoodley P (2005) Ultrasonically controlled release of ciprofloxacin from self-assembled coatings on poly(2-hydroxyethyl methacrylate) hydrogels for Pseudomonas aeruginosa biofilm prevention. Antimicrob Agents Chemother 49(10):4272–4279

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Owusu-Ababio G, Rogers JA, Morck DW, Olson ME (1995) Efficacy of sustained release ciprofloxacin microspheres against device-associated Pseudomonas aeruginosa biofilm infection in a rabbit peritoneal model. J Med Microbiol 43(5):368–376

    Article  CAS  PubMed  Google Scholar 

  • Pandey R, Sharma S, Khuller GK (2004) Liposome-based anti-tubercular drug therapy in a guinea pig model of tuberculosis. Int J Antimicrob Agents 23(4):414–415

    Article  CAS  PubMed  Google Scholar 

  • Pillai RR, Somayaji SN, Rabinovich M, Hudson MC, Gonsalves KE (2008) Nafcillin loaded PLGA nanoparticles for treatment of osteomyelitis. Biomed Mater 3:034114

    Article  PubMed  Google Scholar 

  • Ramage G, Jose A, Sherry L, Lappin DF, Jones B, Williams C (2013) Liposomal amphotericin B displays rapid dose dependant activity against Candida albicans biofilms. Antimicrob Agents Chemother 57(5):2369–2371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ravelingien M, Mullens S, Luyten J, D’Hondt M, Boonen J, Spiegeleer BD, Coenye T, Vervaet C, Remon JP (2010) Vancomycin release from poly(DL-lactic acid) spray-coated hydroxyapatite fibers. Eur J Pharm Biopharm 76(3):366–370

    Article  CAS  PubMed  Google Scholar 

  • Rivera PA, Martinez-Oharriz MC, Rubio M, Irache JM, Espuelas S (2004) Fluconazole encapsulation in PLGA microspheres by spray-drying. J Microencapsul 21:203–211

    Article  CAS  PubMed  Google Scholar 

  • Robinson AM, Bannister M, Creeth JE, Jones MN (2001) The interaction of phospholipid liposomes with mixed bacterial biofilms and their use in the delivery of bactericide. Colloids Surf A Physicochem Eng Aspects 186:43–53

    Article  CAS  Google Scholar 

  • Sahoo SK, Ma W, Labhasetwar V (2004) Efficacy of transferrin-conjugated paclitaxelloaded nanoparticles in a murine model of prostate cancer. Int J Cancer 112:335–340

    Article  CAS  PubMed  Google Scholar 

  • Sampathkumar SG, Yarema KJ (2005) Targeting cancer cells with dendrimers. Chem Biol 12:5–6

    Article  CAS  PubMed  Google Scholar 

  • Sanli O, Biçer E, Isiklan N (2008) In vitro release study of diltiazem hydrochloride from poly (vinyl pyrrolidone)/sodium alginate blend microspheres. JAPS 107:1973–1980

    CAS  Google Scholar 

  • Sawant SN, Selvaraj V, Prabhawathi V, Doble M (2013) Antibiofilm properties of silver and gold incorporated PU, PCLm, PC and PMMA nanocomposites under two shear conditions. PLoS ONE 8(5):e63311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schinabeck MK, Long LA, Hossain MA, Chandra J, Mukherjee PK, Mohamed S, Ghannoum MA (2004) Rabbit model of Candida albicans biofilm infection: liposomal amphotericin B antifungal lock therapy. Antimicrob Agents Chemother 48:1727–1732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Seidler M, Salvenmoser S, Muller FM (2010) Liposomal amphotericin B eradicates Candida albicans biofilm in a continuous catheter flow model. FEMS Yeast Res 10:492–495

    Article  CAS  PubMed  Google Scholar 

  • Sharif MA, Derek JQ, Rebecca JI, Brendan FG, Ryan FD, Clifford CT, Christopher JS (2012a) Gentamicin-loaded nanoparticles show improved antimicrobial effects towards Pseudomonas aeruginosa infection. Int J Nanomedicine 7:4053–4063

    Google Scholar 

  • Sharif NM, Bazzaz BF, Malaekeh-Nikouei B (2012b) The effect of cationic nanoliposomes containing rifampin on eradication of Staphylococcus epidermidis biofilm. Res Pharm Sci 7(5):S275

    Google Scholar 

  • Suk JS, Lai SK, Wang YY, Ensign LM, Zeitlin PL, Boyle MP, Hanes J (2009) The penetration of fresh undiluted sputum expectorated by cystic fibrosis patients by non-adhesive polymer nanoparticles. Biomaterials 30:2591–2597

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takashima Y, Saito R, Nakajima A, Oda M, Kimura A, Kanazawa T, Okada H (2007) Spray-drying preparation of microparticles containing cationic PLGA nanospheres as gene carriers for avoiding aggregation of nanospheres. Int J Pharm 343:262–269

    Article  CAS  PubMed  Google Scholar 

  • Tamilvanan S, Venkateshan N, Ludwig A (2008) The potential of lipid- and polymer-based drug delivery carriers for eradicating biofilm consortia on device-related nosocomial infections. J Control Release 128:2–22

    Article  CAS  PubMed  Google Scholar 

  • Tang BC, Dawson M, Lai SK, Wang YY, Suk JS, Yang M, Zeitlin P, Boyle MP, Fu J, Hanes J (2009) Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier. Proc Natl Acad Sci USA 106:19268–19273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tanihara M, Suzuki Y, Nishimura Y, Suzuki K, Kakimaru Y, Fukunishi Y (1999) A novel microbial infection-responsive drug release system. J Pharm Sci 88(5):510–514

    Article  CAS  PubMed  Google Scholar 

  • Todd JA, Modest EJ, Rossow PW, Tokes ZA (1982) Liposome encapsulation enhancement of methotrexate sensitivity in a transport resistant human leukemic cell line. Biochem Pharmacol 31(4):541–546

    Article  CAS  PubMed  Google Scholar 

  • Tomalia DA, Dewald JR, Hall MJ, Martin SJ, Smith PB (1984) Preprints of the 1st SPSJ international polymer conference. Society of polymer science, Kyoto, Japan

    Google Scholar 

  • Torchilin V (2008) Antibody-modified liposomes for cancer chemotherapy. Expert Opin Drug Deliv 5:1003–1025

    Article  CAS  PubMed  Google Scholar 

  • Tunney MM, Brady AJ, Buchanan F, Newe C, Dunne NJ (2008) Incorporation of chitosan in acrylic bone cement: effect on antibiotic release, bacterial biofilm formation and mechanical properties. J Mater Sci Mater Med 19:1609–1615

    Article  CAS  PubMed  Google Scholar 

  • Vemuri S, Rhodes CT (1995) Preparation and characterization of liposomes as therapeutic delivery systems: a review. Pharma Acta Helvetiae 70:95–111

    Article  CAS  Google Scholar 

  • Vyas SP, Sihorkar V, Jain S (2007) Mannosylated liposomes for bio-film targeting. Int J Pharm 330(1–2):6–13

    Article  CAS  PubMed  Google Scholar 

  • Wasan KM, Lopez-Berestein G (1996) Characteristics of lipid-based formulations that influence their biological behavior in the plasma of patients. Clin Infect Dis 23:1126–1138

    Article  CAS  PubMed  Google Scholar 

  • Watson DS, Endsley AN, Huang L (2012) Design considerations for liposomal vaccines: influence of formulation parameters on antibody and cell-mediated immune responses to liposome associated antigens. Vaccine 30(13):2256–2272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu XS (1995) Synthesis and properties of biodegradable lactic/glycolic acid polymers. In: Wise DL et al (eds) Encyclopedic handbook of biomaterials and bioengineering. Dekker, New York, pp 1015–1054

    Google Scholar 

  • Zhang L, Granick S (2006) How to stabilize phospholipid liposomes (using nanoparticles). Nano Lett 6:694–698

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Pornpattananangkul D, Hu CM, Huang CM (2010) Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem 17:585–594

    Article  CAS  PubMed  Google Scholar 

  • Zhengbing C, Sun Y (2009) Chitosan-based rechargeable long-term antimicrobial and biofilm-controlling systems. J Biomed Mater Res Part A 89:960–967

    Google Scholar 

  • Zhu CT, Xu YQ, Shi J, Li J, Ding J (2010) Liposome combined porous beta-TCP scaffold: preparation, characterization, and anti-biofilm activity. Drug Deliv 17(6):391–398

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iqbal Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sajid, M., Khan, M.S.A., Cameotra, S.S., Ahmad, I. (2014). Drug Delivery Systems That Eradicate and/or Prevent Biofilm Formation. In: Rumbaugh, K., Ahmad, I. (eds) Antibiofilm Agents. Springer Series on Biofilms, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53833-9_18

Download citation

Publish with us

Policies and ethics