Skip to main content

Generating Functionals for Guided Self-Organization

  • Chapter

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 9))

Abstract

One may take it as a running joke, that complex systems are complex since they are complex. It is however important to realize, this being said, that complex systems come in a large varieties, and in many complexity classes, ranging from relatively simple to extraordinary complex. One may distinguish in this context between classical and modern complex system theory. In the classical approach one would typically study a standardized model, like the Lorentz model or the logistic map, being described usually by maximally a handful of variables and parameters (Gros 2008). Many real-world systems are however characterized by a very large number of variables and control parameters, especially when it comes to biological and cognitive systems. It has been noted, in this context, that scientific progress may generically be dealing with complexity barriers of various severities, in far reaching areas like medicine and meteorology (Gros 2012b), when researching real-world natural or biological complex systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnsten, A., Wang, M., Paspalas, C.: Neuromodulation of thought: flexibilities and vulnerabilities in prefrontal cortical network synapses. Neuron 76, 223–239 (2012)

    Article  Google Scholar 

  • Bak, P.: How nature works: the science of self-organized criticality. Springer (1999)

    Google Scholar 

  • Camazine, S., Deneubourg, J., Franks, N., Sneyd, J., Theraula, G., Bonabeau, E.: Self-organization in biological systems. Princeton University Press (2003)

    Google Scholar 

  • Chialvo, D.: Emergent complex neural dynamics. Nature Physics 6(10), 744–750 (2010)

    Article  Google Scholar 

  • Clarke, B.: Stability of complex reaction networks. Wiley (2007)

    Google Scholar 

  • De Wit, C., Bastin, G., Siciliano, B.: Theory of robot control. Springer, New York (1996)

    Book  MATH  Google Scholar 

  • Doya, K.: Metalearning and neuromodulation. Neural Networks 15, 495–506 (2002)

    Article  Google Scholar 

  • Frei, R., Serugendo, G.D.M.: Advances in complexity engineering. International Journal of Bio-Inspired Computation 3(4), 199–212 (2011)

    Article  Google Scholar 

  • Goldberg, D.: Genetic algorithms in search, optimization, and machine learning (1989)

    Google Scholar 

  • Goodhill, G., Sejnowski, T.: A unifying objective function for topographic mappings. Neural Computation 9(6), 1291–1303 (1997)

    Article  Google Scholar 

  • Gros, C.: Complex and adaptive dynamical systems: A primer. Springer (2008)

    Google Scholar 

  • Gros, C.: Cognition and emotion: perspectives of a closing gap. Cognitive Computation 2, 78–85 (2010)

    Article  Google Scholar 

  • Gros, C.: Emotional control–conditio sine qua non for advanced artificial intelligences? In: Müller, V. (ed.) Philosophy and Theory of Artificial Intelligence. Springer (2012a)

    Google Scholar 

  • Gros, C.: Pushing the complexity barrier: diminishing returns in the sciences. Complex Systems 21, 183 (2012b)

    MathSciNet  Google Scholar 

  • Haken, H.: Information and self-organization: A macroscopic approach to complex systems, vol. 40. Springer (2006)

    Google Scholar 

  • Holling, C.: Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 1–23 (1973)

    Google Scholar 

  • Hopfield, J.: Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences 79(8), 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  • Hopfield, J.: Neurons with graded response have collective computational properties like those of two-state neurons. Proceedings of the National Academy of Sciences 81(10), 3088–3092 (1984)

    Article  Google Scholar 

  • Intrator, N., Cooper, L.: Objective function formulation of the bcm theory of visual cortical plasticity: Statistical connections, stability conditions. Neural Networks 5(1), 3–17 (1992)

    Article  Google Scholar 

  • Kauffman, S.: The origins of order: Self-organization and selection in evolution. Oxford University Press (1993)

    Google Scholar 

  • Kelso, J.: Dynamic patterns: The self-organization of brain and behavior. MIT press (1995)

    Google Scholar 

  • Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)

    Google Scholar 

  • Kohonen, T.: Self-organization and associative memory. Springer (1988)

    Google Scholar 

  • Lehn, J.: Toward self-organization and complex matter. Science 295(5564), 2400–2403 (2002)

    Article  Google Scholar 

  • Leigh, J.: Control theory. Peter Peregrinus Limited (2004)

    Google Scholar 

  • Linkerhand, M., Gros, C.: Generating functionals for autonomous latching dynamics in attractor relict networks. arXiv preprint arXiv:1212.5054 (2012a)

    Google Scholar 

  • Linkerhand, M., Gros, C.: Self-organized stochastic tipping in slow-fast dynamical systems. arXiv preprint arXiv:1207.2928 (2012b)

    Google Scholar 

  • Marder, E.: Neuromodulation of neuronal circuits: Back to the future. Neuron 76, 1–11 (2012)

    Article  Google Scholar 

  • Marković, D., Gros, C.: Self-organized chaos through polyhomeostatic optimization. Physical Review Letters 105, 68702 (2010)

    Article  Google Scholar 

  • Marković, D., Gros, C.: Intrinsic adaptation in autonomous recurrent neural networks. Neural Computation 24(2), 523–540 (2012)

    Article  MathSciNet  Google Scholar 

  • Markram, H.: The blue brain project. Nature Reviews Neuroscience 7, 153–160 (2006)

    Article  Google Scholar 

  • Martius, G., Herrmann, J.M.: Taming the beast: Guided self-organization of behavior in autonomous robots. In: Doncieux, S., Girard, B., Guillot, A., Hallam, J., Meyer, J.-A., Mouret, J.-B. (eds.) SAB 2010. LNCS, vol. 6226, pp. 50–61. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  • May, R.: Stability and complexity in model ecosystems. Princeton University Press (2001)

    Google Scholar 

  • Nicolis, G.: Physics of far-from-equilibrium systems and self-organisation. The New Physics 11, 316–347 (1989)

    Google Scholar 

  • Olshausen, B., Anderson, C., Van Essen, D.: A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. The Journal of Neuroscience 13(11), 4700–4719 (1993)

    Google Scholar 

  • Papadimitriou, C., Steiglitz, K.: Combinatorial optimization: algorithms and complexity. Dover Publications (1998)

    Google Scholar 

  • Prokopenko, M.: Guided self-organization. HFSP Journal 3, 287–289 (2009)

    Article  Google Scholar 

  • Triesch, J.: A gradient rule for the plasticity of a neuron’s intrinsic excitability. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp. 65–70. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  • Triesch, J.: Synergies between intrinsic and synaptic plasticity mechanisms. Neural Computation 19(4), 885–909 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Vilalta, R., Drissi, Y.: A perspective view and survey of meta-learning. Artificial Intelligence Review 18(2), 77–95 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudius Gros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gros, C. (2014). Generating Functionals for Guided Self-Organization. In: Prokopenko, M. (eds) Guided Self-Organization: Inception. Emergence, Complexity and Computation, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53734-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53734-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53733-2

  • Online ISBN: 978-3-642-53734-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics