Skip to main content

References

  • Chapter
  • 159 Accesses

Part of the book series: Advances in Exprerimental Medicine and Biology ((volume 50))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • K. M. Aalmo and J. Krane, 1,5,9,13-Tetraoxacyclohexadecane and its 3,3,7,7,11,11,15,15-octamethyl derivative as neutral carrier for lithium ion through artificial membranes, Acta Chem. Scand. A36, 227 (1982).

    Article  Google Scholar 

  • C. Achenbach, Effects of thallous ions on the measurement of intracellular ion activities, 1985, in Kessler et al. 85p. 256.

    Google Scholar 

  • H. Acker, M. Delpiano, M. Fischer, F. Pietruschka and R. G. O’Regan, Role of calcium in the chemoreceptive process of the carotid body, 1981, in Lübbers et al. 81, p. 122.

    Google Scholar 

  • S. Addanki, F. D. Cahill and J. F. Sotos, Determination of intramitochondrial pH and intramitochondrial-extramitochondrial pH gradient of isolated heart mitochondria by the use of 5,5-dimethyl-2,4-oxazolidinedione, J. Biol. Chem. 243, 2337 (1968).

    PubMed  CAS  Google Scholar 

  • R. H. Adrian, The effect of internal and external potassium concentration on the membrane potential of frog muscle, J. Physiol. 133, 631 (1956).

    PubMed  CAS  Google Scholar 

  • D. P. Agin, Electrochemical properties of glass microelectrodes, 1969, in Lavallée et aí. 69, p. 62.

    Google Scholar 

  • J.J. Aguanno and J. H. Ladenson, Influence of fatty acids on the binding of calcium to human albumin, J. Biol. Chem. 257, 8745 (1982).

    PubMed  CAS  Google Scholar 

  • C.C. Aickin, Intracellular pH of the smooth muscle cells of the guinea-pig vas deferens, J. Physiol. 334, 112P(1982).

    Google Scholar 

  • C.C. Aickin and A. F. Brading, Measurement of intracellular chloride in guinea-pig vas deferens by ion analysis,’ chloride efflux and micro-electrodes, J. Physiol. 326, 139 (1982).

    PubMed  CAS  Google Scholar 

  • C.C. Aickin and A. F. Brading, The role of chloride-bicarbonate exchange in the regulation of intracellular chloride in guinea-pig vas deferens, J. Physiol. 349, 587 (1984).

    PubMed  CAS  Google Scholar 

  • C.C. Aickin, Direct measurement of intracellular pH and buffering power in smooth muscle cells of guinea-pig vas deferens, J. Physiol. 349, 571 (1984a).

    PubMed  CAS  Google Scholar 

  • C.C. Aickin, Intracellular sodium activity of the smooth-muscle cells of guinea-pig ureter, J. Physiol. 357, 48 P (1984b).

    Google Scholar 

  • B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts and J. D. Watson, Molecular Biology of the Cell, Garland Publishing, Inc., New York, London, 1983.

    Google Scholar 

  • B. J. Alder and T. E. Wainwright, Studies in molecular dynamics. I. General method, J. Chem. Phys. 31, 459 (1959).

    Article  CAS  Google Scholar 

  • G. Alibert, A. Carrasco and A. M. Boudet, Changes in biochemical composition of vacuoles isolat-ed from Acer pseudoplatanus L. during cell culture, Biochim. Biophys. Acta 721, 22 (1982).

    Article  CAS  Google Scholar 

  • D. G. Allen, J. R. Blinks and F. G. Prendergast, Aequoria luminescence: relation of light emission to calcium concentration - a calcium-independent component, Science 195, 996 (1977).

    Article  PubMed  CAS  Google Scholar 

  • F.J. Alvarez-Leefmans, T.J. Rink and R. Y. Tsien, Intracellular free calcium in Helix aspersa neu-rones, J. Physiol. 306, 19 P (1980).

    Google Scholar 

  • F.J. Alvarez-Leefmans, T.J. Rink and R.Y. Tsien, Measurement of free Ca-T in nerve cell bodies, 1981a, in Sykovâ et al. 81, p. 119.

    Google Scholar 

  • F. J. Alvarez-Leefmans, T. J. Rink and R. Y. Tsien, Free calcium ions in neurones of Helix aspersa measured with ion-selective micro-electrodes, J. Physiol. 315, 531 (1981b).

    PubMed  CAS  Google Scholar 

  • F.J. Alvarez-Leefmans, S. M. Gamino and T.J. Rink, Cytoplasmic free magnesium in neurones of Helix aspersa measured with ion-selective micro-electrodes, J. Physiol. 345, 104P (1983).

    Google Scholar 

  • F.J. Alvarez-Leefmans, S. M. Gamino and T.J. Rink, Intracellular free magnesium in neurones of Helix aspersa measured with ion-selective micro-electrodes, J. Physiol. 354, 303 (1984).

    PubMed  CAS  Google Scholar 

  • F.J. Alvarez-Leefmans, S. M. Gamino, F.Giraldez and H.Gonzalez-Serratos, Intracellular free magnesium in frog skeletal muscle fibers measured with ion-selective microelectrodes, Biophys.J. 47, 458 a (1985).

    Google Scholar 

  • A. Amidsen, Monitoring of lithium treatment through determination of lithium concentration, Dan. Med. Bull. 22, 277 (1975).

    Google Scholar 

  • D. Ammann, E. Pretsch and W. Simon, A synthetic electrically neutral carrier for Ca-+, Tetrahedron Letters 24, 2473 (1972a).

    Article  Google Scholar 

  • D. Ammann, E. Pretsch and W. Simon, A calcium ion-selective electrode based on a neutral carrier, Anal.Letters 5, 843 (1972b).

    Article  CAS  Google Scholar 

  • D. Ammann, E. Pretsch and W. Simon, Darstellung von neutralen, lipophilen Liganden für Mem-branelektroden mit Selektivität für Erdalkali-Ionen, Helv. Chim. Acta 56, 1780 (1973)

    Article  CAS  Google Scholar 

  • D. Ammann, E. Pretsch and W. Simon, A sodium ion-selective electrode based on a neutral carrier, Anal.Letters 7, 23 (1974).

    Article  CAS  Google Scholar 

  • D. Ammann, Darstellung von alkali-und erdalkaliionenselektiven, elektrisch neutralen Trägerliganden und Entwicklung eines hochselektiven Ca Sensors, Thesis, ETH Zürich, No. 5605, Jugs Druck + Verlag, Zürich, 1975.

    Google Scholar 

  • D. Ammann, R. Bissig, M. Güggi, E. Pretsch, W. Simon, I.J. Borowitz and L. Weiss, Preparation of neutral ionophores for alkali and alkaline earth metal cations and their application in ion selective membrane electrodes, Helv. Chim. Acta 58, 1535 (1975 a).

    Google Scholar 

  • D. Ammann, M. Güggi, E. Pretsch and W. Simon, Improved calcium ion-selective electrode based on a neutral carrier, Anal. Letters 8, 709 (1975b).

    CAS  Google Scholar 

  • D. Ammann, R. Bissig, Z. Cimerman, U. Fiedler, M. Güggi, W. E. Morf, M. Oehme, H. Osswald, E. Pretsch and W. Simon, Synthetic neutral carriers for cations, 1976, in Kessler et al. 76a, p,22

    Google Scholar 

  • D. Ammann, P.C. Meier and W. Simon, Design and use of calcium-selective microelectrodes, 1979, in Ashley and Campbell 79, p. 117.

    Google Scholar 

  • D. Ammann, 1981, Discussion paper in Lübbers et a1.81, p.194.

    Google Scholar 

  • D. Ammann, F. Lanter, R. Steiner, D. Erne and W. Simon, New ion selective liquid membrane microelectrodes, 1981a, in Sykovâ et al. 81, p. 13.

    Google Scholar 

  • D. Ammann, F. Lanter, R. A. Steiner, P. Schulthess, Y. Shijo and W. Simon, Neutral carrier based hydrogen ion selective microelectrode for extra-and intracellular studies, Anal. Chem. 53, 2267 (1981b).

    Article  PubMed  CAS  Google Scholar 

  • D. Ammann, P. Anker, H.-B. Jenny and W. Simon, Valinomycin based silicone rubber membrane electrodes for continuous monitoring of potassium in urine, 1981 c, in Ion-Selective Electrodes, E. Pungor and I. Buzâs, eds., Akadémiai Kiadó, Budapest, 1981c, p.179.

    Google Scholar 

  • D. Ammann, H.-B. Jenny, P. Anker, U. Oesch and W. Simon, Carrier based ion-selective liquid membrane electrodes and their medical applications, in Progress in Enzyme and Ion-Selective Electrodes, D. W. Lübbers, H. Acker, R. P. Buck, G. Eisenman, M. Kessler and W. Simon, eds., Springer Verlag, Berlin, Heidelberg, New York, 1981d, p. 21.

    Chapter  Google Scholar 

  • D. Ammann, D. Erne, H.-B. Jenny, F. Lanter and W. Simon, New ion-selective membranes, 1981 e, in Lubbers et al.81, p.9.

    Google Scholar 

  • D. Ammann, P. Anker, H.-B. Jenny, P. Schulthess and W. Simon, Use of neutral carrier based electrodes in biomedical systems, in Clinical Chemistry, E. Kaiser, R. Gabl, M. M. Müller and M. Bayer, eds., Walter de Gruyter and Co., Berlin, New York, 1982, p. 1137.

    Google Scholar 

  • D. Ammann, W. E. Morf, P. Anker, P.C. Meier, E. Pretsch and W. Simon, Neutral carrier based ion-selective electrodes, Ion-Selective Electrode Rev. 5, 3 (1983).

    CAS  Google Scholar 

  • D. Ammann, E. Pretsch, W. Simon, E. Lindner, A. Bezegh and E. Pungor, Lipophilic salts as membrane additives and their influence on the properties of neutral carrier based macro-and micro-electrodes, Anal. Chim. Acta, 171, 119 (1985a).

    Google Scholar 

  • D. Ammann, P. Anker, E. Metzger, U. Oesch and W. Simon, Continuous potentiometric measurement of different ion concentrations in whole blood of the extracorporeal circulation, 1985 b, in Kessler et al. 85, p. 102.

    Google Scholar 

  • D. Ammann, F. Lang, M. Paulmichl, U. Oesch and P. Anker, Contamination of cells by neutral carriers from intracellular microelectrodes, 1985c, in preparation.

    Google Scholar 

  • D. Ammann and P. Anker, Neutral carrier sodium ion-selective microelectrode for extracellular studies, Neurosci.Letters, 57, 267 (1985).

    Article  CAS  Google Scholar 

  • T. E. Andreoli, M.Tieffenberg and D.C. Tosteson, The effect of valinomycin on the ionic permeability of thin lipid membranes, J. Gen. Physiol. 50, 2527 (1967).

    Article  PubMed  CAS  Google Scholar 

  • P. Anker, E. Wieland, D. Ammann, R. E. Dohner, R. Asper and W. Simon, Neutral carrier based ion-selective electrode for the determination of total calcium in blood serum, Anal. Chem. 53, 1970 (1981).

    CAS  Google Scholar 

  • P. Anker, D. Ammann and W. Simon, Blood pHmeasurement with a solvent polymeric membrane electrode in comparison with a glass electrode, Mikrochim.Acta 1983 Ia p.237.

    Google Scholar 

  • P. Anker, H.-B.Jenny, U. Wuthier, R. Asper, D. Ammann and W. Simon, Potentiometry of Na+ in undiluted serum and urine with use of an improved neutral carrier-based solvent polymeric membrane electrode, Clin. Chem. 29 1508 (1983b).

    PubMed  CAS  Google Scholar 

  • P. Anker, H.-B.Jenny, U. Wuthier, R. Asper, D. Ammann and W. Simon, Determination of [K+] in blood serum with a valinomycin-based silicone rubber membrane of universal applicability to body fluids, Clin. Chem. 29, 1447 (1983c).

    Google Scholar 

  • P. Anker, D. Ammann, P.C. Meier and W. Simon, Neutral carrier electrode for continuous measurement of blood Ca-+ in the extracorporeal circulation, Clin.Chem. 30, 454 (1984).

    PubMed  CAS  Google Scholar 

  • F. S. Apple, D. D. Koch, S. Graves and J. H. Ladenson, Relationship between direct-potentiometric and flamephotometric measurement of sodium in blood, Clin.Chem. 28, 1931 (1982).

    PubMed  CAS  Google Scholar 

  • D. M. Armstrong, A materialist theory of the mind, International Library of Philosophy and Scientific Method, T. Honderich, ed., Routledge and Kegan Paul, New York, 1968.

    Google Scholar 

  • W. Mc. D. Armstrong, W. Wojtkowski and W. R. Bixenman, A new solid-state microelectrode for measuring intracellular chloride activities, Biochim. Biophys.Acta 465, 165 (1977).

    Article  CAS  Google Scholar 

  • W. McD. Armstrong and J. F. Garcia-Diaz, Ion-selective microelectrodes: theory and technique, Fed.Proc. 39, 2851 (1980).

    PubMed  CAS  Google Scholar 

  • W. McD. Armstrong, A. Diez de los Rios and N. E. DeRose, Adenosine 3’-5’ cyclic monophosphate (cAMP)-induced changes in intracellular ionic activities: relation to epithelial ion transport, 1981, in Lubbers et al.81, p.211.

    Google Scholar 

  • C.C. Ashley, T.J. Rink and R. Y. Tsien, Changes in free Ca during muscle contraction, measured with an intracellular Ca-selective electrode, J. Physiol. 280, 27 P (1978).

    Google Scholar 

  • C. C. Ashley and A. K. Campbell, eds., Detection and Measurement of Free Ca-+ in Cells, Elsevier, North-Holland Biomedical Press, Amsterdam, New York, Oxford, 1979.

    Google Scholar 

  • C.C. Ashley, J. F. Godber and A. Walton, Microscope-image intensifier studies on single quin2-loaded muscle fibres from the barnacle Balanus nubiles under voltage clamp, J. Physiol. 358, 8 P (1985).

    Google Scholar 

  • C. R. Bader, D. Bertrand and E. A. Schwartz, Voltage-activated and calcium-activated currents studied in solitary rod inner segments from the salamander retina, J. Physiol. 331, 253 (1982).

    PubMed  CAS  Google Scholar 

  • H. Baerentsen, F.Giraldez and T.Zeuthen, Influx mechanisms for Na+ and Cl-across the brush border membrane of leaky epithelia: a model and microelectrode study, J. Membr.Biol. 75, 205 (1983).

    Article  PubMed  CAS  Google Scholar 

  • R. R. Baker, Goal orientation by blindfolded humans after long-distance displacement: possible involvement of a magnetic sense, Science 210, 555 (1980).

    Article  PubMed  CAS  Google Scholar 

  • D. J. Baldwin, Dry beveling of micropipette electrodes, J. Neurosci. Meth. 2, 153 (1980)

    Article  CAS  Google Scholar 

  • K. Ballanyi, P. Grafe and G. ten Bruggencate, Intracellular free sodium and potassium, post-carba-chol hyperpolarization, and extracellular potassium-undershoot in rat sympathetic neurones, Neurosci. Letters 38, 275 (1983).

    CAS  Google Scholar 

  • K. Ballanyi and P. Grafe, An intracellular analysis of y-aminobutyric-acid-associated ion movements in rat sympathetic neurones, J. Physiol. 365, 41 (1985).

    PubMed  CAS  Google Scholar 

  • J. A. Balschi, V. P. Cirillo and C. S. Springer, Jr., Direct high-resolution nuclear magnetic resonance studies of cation transport in vivo. Na+ transport in yeast cells, Biophys.J. 38, 323 (1982).

    Article  PubMed  CAS  Google Scholar 

  • H. Barbier, Développments récents et perspectives des recherches sur l’accumulation du sucre chez la betterave, Sucrerie Française 54 (1981).

    Google Scholar 

  • J. N. Barrett and K.Graubard, Fluorescent staining of cat motoneurons in vivo with beveled micropipettes, Brain Res. 18, 565 (1970).

    Article  PubMed  CAS  Google Scholar 

  • R. G. Bates, A. G. Dickson, M. Gratzl, A. Hrabeczy-Pall, E. Lindner and E. Pungor, Determination of mean activity coefficients with ion-selective electrodes, Anal. Chem. 55, 1275 (1983).

    CAS  Google Scholar 

  • G. Baum and M. Lynn, Polymer membrane electrodes: Part II. A potassium ion-selective membrane electrode, Anal. Chim. Acta 65, 393 (1973).

    Article  CAS  Google Scholar 

  • H. Baumgärtl, T. Shigemitsu and D. W. Lubbers, Mikronadelelektroden zur Messung von Ionenaktivitäten in biologischen Geweben, Naturwissenschaften 63, 40 (1976).

    Article  PubMed  Google Scholar 

  • C. M. Baumgarten, An improved liquid ion exchanger for chloride ion-selective microelectrodes, Am. J. Physiol. 241, C 258 (1981).

    Google Scholar 

  • F. Behm, D. Ammann, W. Simon, K. Brunfeldt and J. Halstram, Cyclic octa-and decapeptides as ionophores for magnesium, Hely. Chim. Acta 68, 110 (1985).

    Article  CAS  Google Scholar 

  • J.-P. Behr, J.-M. Lehn, A.-C. Dock and D. Moras, Crystal structure of a polyfunctional macrocyclic KT complex provides a solid-state model of a K+ channel, Nature 295, 526 (1982).

    Article  PubMed  CAS  Google Scholar 

  • G. Bellomo, S.A. Jewell, H. Thor and S. Orrenius, Regulation of intracellular calcium compartmentation: studies with isolated hepatocytes and t-butyl hydroperoxide, Proc. Natl. Acad. Sci. USA 79, 6842 (1982).

    Article  PubMed  CAS  Google Scholar 

  • M. R. Bendall and W. P. Aue, Experimental verification of depth pulses applied with surface coils, J. Magn. Res. 54, 149 (1983).

    Google Scholar 

  • J. Bendi and E. Pretsch, Conformation analysis of small molecules with PCILO methods, J. Comp. Chem. 3, 580 (1982).

    Article  Google Scholar 

  • C. Benninger, J. Kadis and D. A. Prince, Extracellular calcium and potassium changes in hippocampal slices, Brain Res. 187, 165 (1980).

    Article  PubMed  CAS  Google Scholar 

  • H.J.C. Berendsen, Water structure, in Theoretical and Experimental Biophysics, A. Cole, ed., Vol. 1, Marcel Dekker, Inc., New York, 1967, p. 1.

    Google Scholar 

  • M. J. Berridge, Preliminary measurements of intracellular calcium in an insect salivary gland using a calcium-sensitive microelectrode, Cell Calcium 1, 217 (1980).

    Article  CAS  Google Scholar 

  • D. M. Bers and D. Ellis, Changes of intracellular calcium and sodium activities in sheep heart Pur-kinje fibres measured with ion-selective micro-electrodes, J. Physiol. 310, 73 P (1981).

    Google Scholar 

  • D. M. Bers, A simple method for the accurate determination of free [Ca] in Ca-EGTA solutions, Am. J. Physiol. 242, C404 (1982).

    PubMed  CAS  Google Scholar 

  • D. M. Bers and D. Ellis, Intracellular calcium and sodium activity in sheep heart Purkinje fibres: effect of external sodium and intracellular pH, Pflügers Arch. 393, 171 (1982).

    Article  Google Scholar 

  • D. M. Bers, Ca influx during single cardiac beats monitored by Ca-microelectrodes: staircase, caffeine and cobalt, Fed.Proc. 42, 572 (1983).

    Google Scholar 

  • H. I. Bicher and S. Ohki, Intracellular pH electrode experiments on the giant squid axon. Biochim. Biophys. Acta 255, 900 (1972).

    Article  CAS  Google Scholar 

  • M. Bickel and G. Cimasoni, The pH of human crevicular fluid measured by a new microanalytical technique, J.Periodontal Res. 20, 35 (1985).

    Article  PubMed  CAS  Google Scholar 

  • M.S. Biggs and D. Robson, Advances in the development of extraction resistant flexible PVC compounds, in Polymers in Medicine, E. Chiellini and P. Giusti, eds., Plenum Press, New York, London, 1982, p. 375.

    Google Scholar 

  • L. C. F. Blackman and R. Harrop, Hydrophilation of glass surfaces. I. Investigation of possible promoters of filmwise condensation, J.Appl.Chem. 18, 37 (1968).

    Article  CAS  Google Scholar 

  • M. R. Blatt and C. L. Slayman, KCI leakage from microelectrodes and its impact on the membrane parameters of a nonexcitable cell, J. Membr. Biol. 72, 223 (1983).

    Article  PubMed  CAS  Google Scholar 

  • J. R. Blinks, F. G. Prendergast and D. G. Allen, Photoproteins as biological calcium indicators, Pharmac. Rev. 28, 1 (1976).

    CAS  Google Scholar 

  • J. R. Blinks, D. G. Allen, F. G. Prendergast and G. C. Harrer, Photoproteins as models of drug receptors, Life Sci. 22, 1237 (1978).

    Article  PubMed  CAS  Google Scholar 

  • J. R. Blinks, W. G. Wier, P. Hess and F. G. Prendergast, Measurement of Ca’+ concentrations in living cells, Prog. Biophys. Molec. Biol. 40, 1 (1982).

    Google Scholar 

  • T. V. P. Bliss and T. Lomo, Plasticity in a monosynaptic cortical pathway, J. Physiol. 207, 61 P (1970)

    Google Scholar 

  • T. V. P. Bliss and T. Lomo, Longlasting potentiation of synaptic transmission in the dentate area of the anaestetized rabbit following stimulation of the perforant path, J. Physiol. 232, 331 (1973)

    PubMed  CAS  Google Scholar 

  • T. V. P. Bliss and A. C. Dolphin, What is the mechanism of long-term potentiation in the hippocampus?, Trends Neurosci. 1982, 289.

    Google Scholar 

  • R. Bloch, A. Shatkay and H.A. Saroff, Fabrication and evaluation of membranes as specific electrodes for calcium ions, Biophys. J. 7, 865 (1967).

    Article  PubMed  CAS  Google Scholar 

  • J. P.C. Boerrigter and A. Lehmenkühler, Microprocessor aided correction of the Ca’ error in the signal of a Na+-selective microelectrode, Pflügers Arch.Suppl.to 400, R56 (1984).

    Google Scholar 

  • L. Boksânyi, O. Liardon and E. Kovâts, Chemically modified silicon dioxide surfaces. Reaction of n-alkyldimethylsilanols and n-oxaalkyldimethylsilanols with the hydrated surface of silicon dioxide - the question of the limiting surface concentration, Adv. Coll. Int. Sci. 6, 95 (1976).

    Article  Google Scholar 

  • P.J. Bore, L. Chan, D.G. Gadian, G. K. Radda, B. D. Ross, P. Styles and D.J. Taylor, Noninvasive pH; measurements of human tissue using 31 P-NMR,1982, in Nuccitelli and Deamer 82, p. 527.

    Google Scholar 

  • W. F. Boron and A. Roos, Comparison of microelectrode, DMO, and methylamine methods for measuring intracellular pH, Am. J. Physiol. 231, 799 (1976).

    PubMed  CAS  Google Scholar 

  • S. K. Bosher and R. L. Warren, Very low calcium content of cochlear endolymph, an extracellular fluid, Nature 273, 377 (1978).

    Article  PubMed  CAS  Google Scholar 

  • S. K. Bosher, The role of ion-sensitive microelectrodes in the interpretation of endolymphatic changes in the mammalian inner ear, 1981, in Zeuthen 81a, p. 129.

    Google Scholar 

  • H. Bostock and P. Grafe, On the conducting block of demyelinated rat spinal roots during long lasting trains of impulses, Pflügers Arch. Suppl. to 402, R31 (1984).

    Google Scholar 

  • M. R. Boyett and G. Hart, Factors affecting intracellular sodium activity (a’ya) during repetitive stimulation in sheep Purkinje fibres, J. Physiol. 357, 49 P (1984).

    Google Scholar 

  • D. P. Brezinski, Influence of colloidal charge on response of pH and reference electrodes: the suspension effect, Talanta 30, 347 (1983).

    Article  PubMed  CAS  Google Scholar 

  • R. A. Briano, Jr., A reproducible technique for breaking glass micropipettes over a wide range of tip diameters, J. Neurosci. Methods 9, 31 (1983).

    Article  PubMed  Google Scholar 

  • C. A. Briggs, T. H. Brown and D. A. McAfee, Neurophysiology and pharmacology of long-term potentiation in the rat sympathetic ganglion, J. Physiol. 359, 503 (1985).

    PubMed  CAS  Google Scholar 

  • F.J. Brinley, Jr., Ion fluxes in the central nervous system, Int. Rev. Neurobiol. 5, 183 (1963).

    Article  PubMed  CAS  Google Scholar 

  • F. J. Brinley and A. Scarpa, Ionized magnesium concentration in axoplasm of dialyzed squid axons, FEBS Lett. 50, 82 (1975).

    Article  PubMed  CAS  Google Scholar 

  • F. J. Brinley, T. Tiffert and A. Scarpa, The concentration of ionized magnesium in barnacle muscle fibers, J. Physiol. 266, 545 (1977).

    PubMed  CAS  Google Scholar 

  • F.J. Brinley, Jr., Calcium buffering in squid axons, Annu. Rev. Biophys. Bioeng. 7, 363 (1978).

    Article  CAS  Google Scholar 

  • H. M. Brown and J. D. Owen, Micro ion-selective electrodes for intracellular ions, Ion-Selective Electrode Rev. 1, 145 (1979).

    CAS  Google Scholar 

  • H. M. Brown, J. P. Pemberton and J. D. Owen, A calcium-sensitive microelectrode suitable for intracellular measurement of calcium(II) activity, Anal. Chim. Acta 85, 261 (1976).

    Article  CAS  Google Scholar 

  • K.T. Brown and D.G. Flaming, Beveling of fine micropipette electrodes by a rapid precision method, Science 185, 693 (1974).

    Article  PubMed  CAS  Google Scholar 

  • K.T. Brown and D. G. Flaming, Instrumentation and technique for beveling fine micropipette electrodes, Brain Res. 86, 172 (1975).

    Article  PubMed  CAS  Google Scholar 

  • K.T. Brown and D.G. Flaming, New microelectrode techniques for intracellular work in small cells, Neuroscience 2, 813 (1977).

    Article  Google Scholar 

  • K. T. Brown and D. G. Flaming, Technique for precision beveling of relatively large micropipettes, J. Neurosci. Meth. 1, 25 (1979).

    Article  CAS  Google Scholar 

  • R. P. Buck, G. V. Hendrix and J. H. Boles, Theory and responses of neutral carrier membrane for oil soluble anions, IUPAC International Symposium on Selective Ion-Sensitive Electrodes, Cardiff, 1973.

    Google Scholar 

  • R. P. Buck, J. H. Boles, R. D. Porter and J. A. Margolis, Glass electrode responses interpreted by the solid state homogeneous-and heterogeneous-site membrane potential theory, Anal.Chem. 46, 255 (1974).

    Article  CAS  Google Scholar 

  • R. P. Buck, Electroanalytical chemistry of membranes, Crit. Rev. Anal. Chem. 5, 323 (1975)

    Article  CAS  Google Scholar 

  • R. P. Buck, Ion selective electrodes, Anal. Chem. 48, 23 R (1976).

    Article  Google Scholar 

  • R. P. Buck, Electrochemistry of ion-selective electrodes, Sensors and Actuators 1, 197 (1981).

    Article  CAS  Google Scholar 

  • R. Buchi, E. Pretsch and W. Simon, 13C-Kernresonanzspektroskopische Untersuchungen an ionenselektiven Flüssigmembranen, HeIv. Chim. Acta 59, 2327 (1976a).

    Article  CAS  Google Scholar 

  • R. Buchi, E. Pretsch, W. E. Morf and W. Simon, 13C-Kernresonanzspektroskopische und elektromotorische Untersuchungen der Wechselwirkung von neutralen Carriern mit Ionen in Membranen, Helv. Chim. Acta 59, 2407 (1976b).

    Article  Google Scholar 

  • C. P. Buhrle and U. Sonnhof, Ion fluxes across the membrane of motoneurons during the action of glutamate, 1981, in Sykova et al.81, p.187.

    Google Scholar 

  • G. Burckhardt and H. Murer, A cyanine dye as indicator of membrane electrical potential differences in brush border membrane vesicles. Studies with K+ gradients and Nay/amino acid co-transport, in Kidney and Body Fluids, L.Takâcs, ed., Adv. Physiol. Sci. 11, 409 (1981).

    Google Scholar 

  • J. Bures“ and J. Kiivânek, Ionic movements in the brain studied with the aid of washing the cortical surface with an epidural cannula, Physiol. Bohemoslov. 9, 488 (1960).

    Google Scholar 

  • W. Burgermeister and R. Winkler-Oswatitsch, Complex Formation of monovalent cations with bio-functional ligands, Topics in Current Chemistry 69, 91 (1977).

    Article  PubMed  CAS  Google Scholar 

  • U. Burkert and N. L. Allinger, Molecular Mechanics, ACS Monograph 177, Am. Chem. Soc., Washington, 1982.

    Google Scholar 

  • P.A. Buser and A. Rougeul-Buser, eds., Cerebral Correlates of Conscious Experience, North-Holland, Publishing Company, Amsterdam, New York, Oxford, 1978.

    Google Scholar 

  • J. N. Butler, The thermodynamic activity of calcium ion in sodium chloride-calcium chloride electrolytes, Biophys.J. 8, 1426 (1968).

    Article  PubMed  CAS  Google Scholar 

  • L. Byerly and W. J. Moody, Intracellular calcium ions and calcium currents in perfused neurones of the snail, Lymnaea stagnalis, J. Physiol. 352, 637 (1984).

    PubMed  CAS  Google Scholar 

  • D. K. Cabbiness and D. W. Margerum, Macrocyclic effect on the stability of copper(II) tetramine complexes, J. Am. Chem. Soc. 91, 6540 (1969).

    Article  CAS  Google Scholar 

  • P.C. Caldwell, An investigation of the intracellular pH of crab muscle fibres by means of micro-glass and micro-tungsten electrodes, J. Physiol. 128, 169 (1954).

    Google Scholar 

  • K. Cammann, Working with Ion-Selective Electrodes, Springer Verlag, Berlin, Heidelberg, New York, 1979.

    Google Scholar 

  • A. K. Campbell, T.J. Lea and C.C. Ashley, Coelenterate photoproteins, 1979, in Ashley and Campbell 79, p. 13.

    Google Scholar 

  • A. K. Campbell, Intracellular Calcium Its Universal Role as Regulator, John Wiley and Sons, Chichester, Brisbane, Toronto, Singapore, 1983.

    Google Scholar 

  • F. Capra, The Tao of the Physics, Berkeley, 1975.

    Google Scholar 

  • E. Carafoli, Mitochondrial uptake of calcium ions and the regulation of cell function, Biochem. Soc. Symp. 39, 89 (1974).

    CAS  Google Scholar 

  • E. Carafoli and M. Crompton, The regulation of intracellular calcium, Curr. Topics Membr.Transp. 10, 151 (1978).

    Article  CAS  Google Scholar 

  • E. Carafoli, P. Caroni, M.Chiesi and K.Famulski, Ca-+ as a metabolic regulator: mechanisms for the control of its intracellular activity, in Metabolic Compartmentation, H. Sies, ed., Academic Press, London, 1982, p. 521.

    Google Scholar 

  • E. Carafoli, The regulation of the cellular functions of Ca’, in Disorders of Mineral Metabolism, F. Bronner and J. W. Coburn, eds., Vol. II, Academic Press, Inc., New York, 1982, p. 1.

    Google Scholar 

  • N. R. Carlson, Physiology of Behavior, Allyn and Bacon, Inc., Boston, London, Sydney, Toronto, 1977.

    Google Scholar 

  • P. Caroni, P. Gazzotti, P. Vuilleumier, W. Simon and E. Carafoli, Ca’-+ transport mediated by a syn-thetic neutral Ca-+-ionophore in biological membranes, Biochim. Biophys. Acta 470, 437 (1977)

    Article  CAS  Google Scholar 

  • N. W. Carter, F. C. Rector, R. T. Champion and D. W. Seldin, Measurement of intracellular pH of skeletal muscle with pH-sensitive glass microelectrodes, J.Clin.Invest. 46, 920 (1967).

    Article  PubMed  CAS  Google Scholar 

  • D.C. Chang, H. E. Rorschach, B. L. Nichols and C. F. Hazlewood, Implication of diffusion coeffi-cient measurements for the structure of cellular water, 1973, in Hazlewood 73, p. 434.

    Google Scholar 

  • J.J. Chang, A new technique for beveling the tips of glass capillary micropipettes and microelec-

    Google Scholar 

  • trodes, Comp. Biochem. Physiol. 52 A, 567 (1975).

    Google Scholar 

  • R. A. Chapman, A. Coray and J. A.S. McGuigan, Na/Ca exchange in mammalian ventricular muscle. A study with Nat -sensitive micro-electrodes, J. Physiol. 343, 253 (1983).

    PubMed  CAS  Google Scholar 

  • R. A. Chapman, J. A. S. McGuigan, G. C. Rodrigo and R. J. Yates, Measurement of intracellular activity of Na ions in frog cardiac muscle at rest and during Na-withdrawal contractures, J. Physiol. 346, 70 P (1984).

    Google Scholar 

  • V. K.-H. Chen, A simple piezoelectric drive for glass microelectrodes, J. Phys. E.: Sci. Instr. 11, 1978

    Google Scholar 

  • C. Cheng, Philosophical Aspects of the Mind-Body Problem, The University Press of Hawaii, Honolulu, 1975.

    Google Scholar 

  • C. W. Chiu, L. H. Lee, C. Y. Wang and G. T. Bryan, Mutagenicity of some commercially available nitro compounds for Salmonella tvphimurium, Mutation Res. 58, 11 (1978).

    Article  PubMed  CAS  Google Scholar 

  • J. Chmielowiec and W. Simon, Alkaline earth cation-complexing chromatography with a neutral ligand chemically bonded to silica gel, Chromatographia 11, 99 (1978).

    Article  CAS  Google Scholar 

  • T. K. Chowdhury, Fabrication of extremely fine glass micropipette electrodes, J. Sci. Instr. 2, 1087 (1969).

    Article  CAS  Google Scholar 

  • G. R.J. Christoffersen and E. S. Johansen, Microdesign for a calcium-sensitive electrode, Anal.Chim. Acta 81, 191 (1976).

    CAS  Google Scholar 

  • M. F. Cicirelli, K. R. Robinson and L. D. Smith, Internal pH of Xenopus oocytes: a study of the mechanism and role of pH changes during meiotic maturation, Devel. Biol. 100, 133 (1983)

    CAS  Google Scholar 

  • M. M. Civan, Intracellular activities of sodium and potassium, Am. J. Physiol. 234, F261 (1978)

    PubMed  CAS  Google Scholar 

  • M. M. Civan, Epithelial Ions and Transport, Application of Biophysical Techniques, John Wiley and Sons, New York, Chichester, Brisbane, Toronto, Singapore, 1983.

    Google Scholar 

  • M. M. Civan, K. Peterson-Yantorno, D. R. DiBona, D. F. Wilson and M. Erecinska, Bioenergetics of Na+ transport across frog skin: chemical and electrical measurements, Am. J. Physiol. 245, F691 (1983).

    PubMed  CAS  Google Scholar 

  • M. M. Civan, Intracellular calcium activity in split frog skin epithelium, Biophys.J. 45, 140a (1984)

    Google Scholar 

  • E. Clementi, Lecture notes in chemistry, Vol. 2., Springer Verlag, Berlin, Heidelberg, New York, 1976.

    Google Scholar 

  • E. Clementi, F. Cavallone and R. Scordamaglia, Analytical potentials from “ab initio” computations for the interaction between biomolecules, 1. Water and amino acids, J.Am. Chem. Soc. 99, 5531 (1977).

    Article  PubMed  CAS  Google Scholar 

  • C.J. Cohen and H. A. Fozzard, Intracellular K and Na activities in papillary muscle during inotropic interventions, Biophys.J. 25, 144a (1979).

    Google Scholar 

  • C. J. Cohen, H. A. Fozzard and S. S. Sheu, Increase in intracellular sodium ion activity during stimulation in mammalian cardiac muscle, Circ. Res. 50, 651 (1982 a).

    Article  PubMed  CAS  Google Scholar 

  • R. D. Cohen and R. A. Iles, Intracellular pH: measurement, control, and metabolic interrelationships, CRC Critical Rev. Clin. Lab. Sci. 6, 101 (1975).

    Article  CAS  Google Scholar 

  • R. D. Cohen, R. M. Henderson, R. A. Iles, J. P. Monson and J. A. Smith, The techniques and uses of intracellular pH measurements, Ciba Found. Symp. 87, 20 (1982b).

    Google Scholar 

  • M. Cohn and T. R. Hughes, Jr., Nuclear magnetic resonance spectra of adenosine di-and triphos-phate. II. Effect of complexing with divalent metal ions, J. Biol. Chem. 237, 176 (1962).

    PubMed  CAS  Google Scholar 

  • R. L. Coleman and C.C. Young, Evidence for formation of bicarbonate complexes with Na+ and K+ under physiological conditions, Clin. Chem. 27, 1938 (1981).

    CAS  Google Scholar 

  • J. A. Coles and M. Tsacopoulos, A method of making fine double-barrelled potassium-sensitive micro-electrodes for intracellular recording, J. Physiol. 270, 12 P (1977).

    Google Scholar 

  • J. A. Coles, M. Tsacopoulos, P. Rabineau and A. R. Gardner-Medwin, Movement of potassium into glial cells in the retina of the drone, Apis mellifera,during photostimulation, 1981, in Sykovâ et al.81, p.345.

    Google Scholar 

  • J. A. Coles and R. K. Orkand, Sodium activity in drone photoreceptors, J. Physiol. 332, 16 P (1982).

    Google Scholar 

  • J. A. Coles and R. K. Orkand, Modification of potassium movement through the retina of the drone (Apis mellifera, d) by glial uptake, J. Physiol. 340, 157 (1983).

    PubMed  CAS  Google Scholar 

  • J. A. Coles, J. L. Munoz and F. Deyhimi, Surface and volume resistivity of pyrex glass used for liquid membrane ion-sensitive microelectrodes, 1985, Kessler et aí. 85, p. 67.

    Google Scholar 

  • J. A. Coles and R. K. Orkand, Changes in sodium activity during light stimulation in photoreceptors, glia and extracellular space in drone retina, J. Physiol. 362, 415 (1985).

    PubMed  CAS  Google Scholar 

  • J.S. Coombs, J.C. Eccles and P. Fatt, The specific ionic conductances and the ionic movements across the motoneuronal membrane that produce the inhibitory postsynaptic potential, J. Physiol. 130, 326 (1955).

    PubMed  CAS  Google Scholar 

  • R. L. Coon, N. C. J. Lai and J. P. Kampine, Evaluation of a dual-function pH and pCO: in vivo sensor, J. Appl. Physiol. 40, 625 (1976).

    PubMed  CAS  Google Scholar 

  • J. A. Connor and P. Hockberger, A novel membrane sodium current induced by injection of cyclic nucleotides into gastropod neurones, J.Physiol. 354, 139 (1984).

    PubMed  CAS  Google Scholar 

  • F. W. Cope, Nuclear magnetic resonance evidence for complexing of sodium ions in muscle, Biochem. 54, 225 (1965).

    CAS  Google Scholar 

  • D. H. Copp, Endocrine control of calcium homeostasis, J. Endocrinol. 43, 137 (1969).

    Article  PubMed  CAS  Google Scholar 

  • A. Coray, C. H. Fry, P. Hess, J. A. S. McGuigan and R Weingart, Resting calcium in sheep cardiac tissue and in frog skeletal muscle measured with ion-selective micro-electrodes, J. Physiol., 305, 60 P (1980).

    Google Scholar 

  • A. Coray and J. A.S. McGuigan, Measurement of intracellular ionic calcium concentration in guinea-pig papillary muscle, 1981, in Sykovâ et al.81, p.299.

    Google Scholar 

  • A. Coray and J. A.S. McGuigan, pH; at rest and during Na withdrawal contractures in ferret ventricle, J. Physiol. 336, 66 P (1982).

    Google Scholar 

  • G. Corongiu, E. Clementi, E. Pretsch and W. Simon, Ab initio calculations of the interaction of ions with neutral ligands. I. Pair potentials for Na+/ ether, Na+/thioether and Na+/amide systems, J. Chem. Phys. 70, 1266 (1979).

    CAS  Google Scholar 

  • G. Corongiu, E. Clementi, E. Pretsch and W. Simon, Ab initio calculations of the interaction of ions with neutral ligands. Pair potentials for Li+/ ether-, Li+/thioether-, and Li+/amide-systems, J. Chem. Phys. 72, 3096 (1980).

    Article  CAS  Google Scholar 

  • A. K. Covington and N. Kumar, Use of the ionophore antibiotic A23187 in liquid ion-exchange ion-selective electrodes, Anal. Chim. Acta 85, 175 (1976).

    Article  CAS  Google Scholar 

  • A. K. Covington, R. G. Bates and R. A. Durst, Definition of pH scales, standard reference values, measurement of pH and related terminology, Pure Appl. Chem. 55, 1467 (1983).

    CAS  Google Scholar 

  • A. Craggs, G. J. Moody and J. D. R. Thomas, PVC matrix membrane ion-selective electrodes, J.Chem.Educ. 51, 541 (1970).

    Article  Google Scholar 

  • A. Craggs, G. J. Moody and J. D. R. Thomas, Evaluation of calcium ion-selective electrodes based on di(n-alkylphenyl) phosphate sensors and their calibration with ion buffers, Analyst 104, 412 (1979).

    Article  CAS  Google Scholar 

  • T. A. Cross, C. Pahl, R. Oberhänsli, W. P. Aue, U. Keller and J. Seelig, Ketogenesis in the living rat followed by “C NMR spectroscopy, Biochem. 23, 6398 (1984).

    Article  CAS  Google Scholar 

  • M. Dagostino and C.O. Lee, Neutral carrier Na+- and Cat+-selective microelectrodes for intracellular application, Biophys.J. 40, 199 (1982).

    Article  PubMed  CAS  Google Scholar 

  • G. Dahl and G. Isenberg, Decoupling of heart muscle cells: correlation with increased cytoplasmic calcium activity and with changes of nexus ultrastructure, J. Membr. Biol. 53, 63 (1980).

    Article  CAS  Google Scholar 

  • J. Daut, The passive electrical properties of guinea-pig ventricular muscle as examined with a voltage-clamp technique, J. Physiol. 330, 221 (1982a).

    PubMed  CAS  Google Scholar 

  • J. Daut, The role of intracellular sodium ions in the regulation of cardiac contractility, J. Mol. Cell. Card. 14, 189 (1982b).

    Article  CAS  Google Scholar 

  • J. Daut and R. Rudel, The electrogenic sodium pump in guinea-pig ventricular muscle: inhibition of pump current by cardiac glycosides, J. Physiol. 330, 243 (1982).

    PubMed  CAS  Google Scholar 

  • J. M. Davidson and R. J. Davidson, eds., The Psychobiology of Consciousness, Plenum Press, New York, London, 1980.

    Google Scholar 

  • J. Dawson and M. B. A. Djamgoz, Intracellular potassium activities of the muscle cells of a Lepidopteran larva, J. Physiol. 351, 36 P (1984).

    Google Scholar 

  • A. de Hemptinne, A double-barrel pH micro-electrode for intracellular use. J. Physiol. 295, 5 P (1979).

    Google Scholar 

  • A. de Hemptinne, R. Marrannes and B. Vanheel, Double-barreled intracellular pH electrode: construction and illustration of some results, 1982, in Nuccitelli and Deamer 82, p. 7.

    Google Scholar 

  • J. W. Deitmer and W. R. Schlue, Intracellular Na’ and Ca’+ in leech retzius neurones during inhibition of the Na+-K+ pump, Pflügers Arch. 397, 195 (1983).

    Article  PubMed  CAS  Google Scholar 

  • J. W. Deitmer and W. R. Schlue, Na-dependent changes of intracellular calcium in leech sensory neurones, J. Physiol. 357, 53 P (1984).

    Google Scholar 

  • S. W. de Laat, W. Wouters, M. M. Marques da Silva Pimenta Guarda and M. A. da Silva Guarda, Intracellular ionic compartmentation, electrical membrane properties, and cell membrane permeability before and during first cleavage in the Ambvstoma egg, Exp. Cell Res. 91, 15 (1975).

    Article  PubMed  Google Scholar 

  • M. Delpiano and H. Acker, Intracellular ion activity (K+, Ca:“and C1-) and membrane potential of frog muscle in vitro, 1981, in Lubbers et aí. 81, p. 206.

    Google Scholar 

  • M. A. Delpiano and H. Acker, Simultaneous response of the extracellular Ca and K+ activity during hypoxia and hypercapnia and their possible interdependence in the superfused cat carotid body, Pflügers Arch.Suppl.to 402, R35 (1984).

    Google Scholar 

  • F. Deyhimi and J. A. Coles, Rapid silylation of a glass surface: choice of reagent and effect of experimental parameters on hydrophobicity, Helv.Chim. Acta 65, 1752 (1982).

    CAS  Google Scholar 

  • H. Diebler, M. Eigen, G. Ilgenfritz, G. Maass and R. Winkler, Kinetics and mechanism of reactions of main group metal ions with biological carriers, Pure Appl. Chem. 20, 93 (1969).

    Google Scholar 

  • B. Dietrich, J.-M. Lehn and J. P. Sauvage, Les cryptates, Tetrahedron Letters 34, 2885 (1969).

    Article  Google Scholar 

  • B. Dietrich, J.-M. Lehn, J. P. Sauvage and J. Blanzat, Cryptates - X. Synthèses et propriétés physiques de systèmes diaza-polyoxa-macro-bicycliques, Tetrahedron 29, 1629 (1973).

    Article  CAS  Google Scholar 

  • B. Dietrich, J. Guilhem, J.-M. Lehn, C. Pascard and E. Sonveaux, 11. Molecular recognition in anion coordination chemistry, Hely. Chim. Acta 67, 91 (1984).

    Article  CAS  Google Scholar 

  • I. Dietzel, U. Heinemann, G. Hofmeier and H. D. Lux, Transient changes in the size of the extracellular space in the sensorimotor cortex of cats in relation to stimulus-induced changes in potassium concentration, Exp. Brain Res. 40, 432 (1980).

    Article  PubMed  CAS  Google Scholar 

  • I. Dietzel, U. Heinemann, G. Hofmeier and H. D. Lux, Changes in the extracellular volume in the cerebral cortex of cats in relation to stimulus induced epileptiform afterdischarges, in Physiology and Pharmacology of Epileptogenic Phenomena, M. R. Klee et al., eds., Raven Press, New York, 1982 a, p.5.

    Google Scholar 

  • I. Dietzel, U. Heinemann, G. Hofmeier and H. D. Lux, Stimulus-induced changes in extracellular Na’ and Cl-concentration in relation to changes in the size of the extracellular space, Exp. Brain. Res. 46, 73 (1982b).

    Article  PubMed  CAS  Google Scholar 

  • R. Dingledine and G. Somjen, Calcium dependance of synaptic transmission in the hippocampal slice, Brain Res. 207, 218 (1981).

    Article  PubMed  CAS  Google Scholar 

  • R. DiPolo, H. Rojas, J. Vergara, R. Lopez and C. Caputo, Measurements of intracellular ionized calcium in squid giant axons using calcium-selective electrodes, Biochim.Biophys.Acta 728, 311 (1983).

    Article  PubMed  CAS  Google Scholar 

  • M. Dobler, lonophores and Their Structures, J. Wiley and Sons, New York, Chichester, Brisbane, Toronto, 1981.

    Google Scholar 

  • A. Dörge, R. Rick, K. Gehring and K. Thurau, Preparation of freeze-dried cryosections for quantitative X-ray microanalysis of electrolytes in biological soft tissues, Pflügers Arch. 373, 85 (1978).

    Article  PubMed  Google Scholar 

  • P.J. Donaldson and J.P. Leader, Intracellular ionic activities in the EDL muscle of the mouse, Pflügers Arch. 400, 166 (1984).

    Article  PubMed  CAS  Google Scholar 

  • K. Dresdner, R. P. Kline and J. Kupersmith, Extracellular calcium ion depletion in frog ventricle, Biophys.J. 37, 239a (1982).

    Google Scholar 

  • K. P. Dresdner and R. P. Kline, Extracellular calcium depletion in frog ventricular myocardium, J. Physiol. 358, 57 P (1985).

    Google Scholar 

  • S. Dütsch, H.-B. Jenny, K. Schlatter, P. Périsset, G. Wolff, J.-T. Clerc, E. Pretsch and W. Simon, Microprocessor-controlled ex vivo monitoring of Na’ and K+ concentrations in undiluted urine with ion selective electrodes, Anal. Chem. 57, 578 (1985).

    Google Scholar 

  • E. Dufau, H. Acker and D. Sylvester, Triple-barrelled ion-sensitive microelectrode for simultaneous measurements of two extracellular ion activities, Med. Progr.Technol. 9, 33 (1982).

    CAS  Google Scholar 

  • M. E. Duffey and G. Bebernitz, Intracellular chloride and hydrogen activities in rabbit colon, Fed. Proc. 42, 1353 (1983).

    Google Scholar 

  • M. E. Duffey, Intracellular pH and bicarbonate activities in rabbit colon, Am. J. Physiol. 246, C558 (1984).

    CAS  Google Scholar 

  • J. C. Eccles, An instruction-selection hypothesis of cerebral learning, 1978, in Buser and RougeulBuser 78, p. 155.

    Google Scholar 

  • J. C. Eccles, The Human Psyche, Springer International, Berlin, Heidelberg, 1980.

    Google Scholar 

  • J. C. Eccles, The modular operation of the cerebral neocortex considered as the material basis of mental events, Neurosci. 6, 1839 (1981).

    Article  CAS  Google Scholar 

  • J. C. Eccles, Calcium in long-term potentation as a model for memory, Neurosci. 10, 1071 (1983).

    Article  CAS  Google Scholar 

  • A. Edelman, S. Curci, I. Samarzija and E. Frömter, Determination of intracellular K+ activity in rat kidney proximal tubular cells, Pflügers Arch. 378, 37 (1978).

    Article  PubMed  CAS  Google Scholar 

  • H. T. Edzes and H.J.C. Berendsen, The physical state of diffusible ions in cells, Ann. Rev. Biophys. Bioeng. 4, 265 (1975).

    Article  CAS  Google Scholar 

  • J. Ehrenfeld, F. Garcia-Romeu and B.J. Harvey, Electrogenic active proton pump in Rana esculenta skin and its role in sodium ion transport, J. Physiol. 359, 331 (1985).

    PubMed  CAS  Google Scholar 

  • B. E. Ehrlich and J. M. Diamond, Lithium, membranes, and manic-depressive illness, J. Membr. Biol. 52, 187 (1980).

    Article  PubMed  CAS  Google Scholar 

  • G. Eisenman, Glass Electrodes For Hydrogen and Other Cations, Principles and Practice, M. Dekker, Inc., New York, 1967.

    Google Scholar 

  • G. Eisenman, The ion exchange characteristics of the hydrated surface of Na+ selective glass electrodes, 1969, in Lavallée et al.69, p.32.

    Google Scholar 

  • D. Ellis, J. W. Deitmer and D. M. Beers, Intracellular pH, Na. and Ca-+ activity measurements in mammalian heart muscle, 1981, in Libbers et al.81, p.148.

    Google Scholar 

  • D. Ellis and K. T. MacLeod, Sodium-dependent control of intracellular pH in Purkinje fibres of sheep heart, J. Physiol. 359, 81 (1985).

    PubMed  CAS  Google Scholar 

  • E. Eriksson, The significance of pH, ion activities, and membrane potentials in colloidal systems, Science 113, 418 (1951).

    Article  PubMed  CAS  Google Scholar 

  • D. Erne, D. Ammann and W. Simon, Liquid membrane pH electrode based on a synthetic proton carrier, Chimia 33, 88 (1979a).

    CAS  Google Scholar 

  • D. Erne, W. E. Morf, S. Arvanitis, Z. Cimerman, D. Ammann and W. Simon, Durch elektrisch geladene Ionophore induzierter Ionentransport in Modellmembranen mit Selektivität für Magnesium und Calcium, Hely. Chim. Acta 62, 994 (1979b).

    Article  CAS  Google Scholar 

  • D. Erne, N. Stojanac, D. Ammann, E. Pretsch and W. Simon, Lipophilic amides of EDTA, NTA and iminodiacetic acid as ionophores for alkaline earth metal cations, Heiv. Chim. Acta 63, 2264 (1980a).

    Article  CAS  Google Scholar 

  • D. Erne, N. Stojanac, D. Ammann, P. Hofstetter, E. Pretsch and W. Simon, Lipophilic di-and tri-amides as ionophores for alkaline earth metal cations, Helv. Chim. Acta 63, 2271 (1980b).

    Article  CAS  Google Scholar 

  • D. Erne, Ionophore mit Selektivität für Erdalkali-und Wasserstoffionen und deren Einsatz in Flüssigmembranelektroden, Thesis, ETH Zürich, No. 6889, ADAG Administration and Druck AG, Zürich, 1981.

    Google Scholar 

  • D. Erne, K. V. Schenker, D. Ammann, E. Pretsch and W. Simon, Applicability of a carrier based liquid membrane pH electrode to measurements in acidic solutions, Chimia 35, 178 (1981).

    CAS  Google Scholar 

  • D. Erne, D. Ammann, A. F. Zhukov, F. Behm, E. Pretsch and W. Simon, Lipophilic diamides as ionophores for alkali and alkaline earth metal cations, Hely. Chim. Acta 65, 538 (1982).

    Article  CAS  Google Scholar 

  • R. J. Feldmann, The design of computing systems for molecular modeling, Ann. Rev. Biophys. Bioeng. 5, 477 (1976).

    Article  CAS  Google Scholar 

  • U. Fiedler and J. Rúzicka, Selectrode - the universal ion-selective electrode. Part VII. A valinomycin-based potassium electrode with nonporous polymer membrane and solid-state inner reference system. Anal. Chim. Acta 67, 179 (1973).

    Article  CAS  Google Scholar 

  • A.S. Finkel and S. Redman, A shielded microelectrode suitable for single-electrode voltage clamping of neurones in the CNS, J. Neurosci. Meth. 9, 23 (1983).

    Article  CAS  Google Scholar 

  • D.G. Flaming and K.T. Brown, Micropipette puller design: form of the heating filament and effects of filament width on tip length and diameter, J. Neurosci.Meth. 6, 91 (1982).

    Article  CAS  Google Scholar 

  • P. Flatman and V. L. Lew, Use of ionophore A 23187 to measure and to control free and bound cytoplasmic Mg in intact red cells, Nature 267, 360 (1977).

    Article  PubMed  CAS  Google Scholar 

  • B. Fleet, T. H. Ryan and M.J. D. Brand, Investigation of the factors affecting the response time of a calcium selective liquid membrane electrode, Anal. Chem. 46, 12 (1974).

    CAS  Google Scholar 

  • N. Fogh-Andersen, T. F. Christiansen, L. Komarmy and O. Siggaard-Andersen, Measurement of free calcium ion in capillary blood and serum, Clin. Chem. 24, 1545 (1978).

    CAS  Google Scholar 

  • W. Forth, D. Henschler and W. Rummel, eds., Allgemeine und spezielle Pharmakologie und Toxikologie, Wissenschaftsverlag, Mannheim, Wien, Zürich, 1977, p. 396.

    Google Scholar 

  • K. R. Foster, J. M. Bidinger and D.O. Carpenter, The electrical resistivity of cytoplasm, Biophys. J. 16, 991 (1976).

    Google Scholar 

  • E. Frömter and B. Gebler, Electrical properties of amphibian urinary bladder epithelia. III. The cell membrane resistances and the effect of amiloride, Pflügers Arch. 371, 99 (1977).

    Article  PubMed  Google Scholar 

  • E. Frömter, M. Simon and B. Gebler, A double-channel ion-selective microelectrode with the possibility of fluid ejection for localization of the electrode tip in the tissue, 1981, in Lubbers et al.81, p.35.

    Google Scholar 

  • M. Fromm and S. G. Schultz, Some properties of KCI-filled microelectrodes: correlation of potassium “leakage” with tip resistance, J. Membr. Biol. 62, 239 (1981).

    Article  PubMed  CAS  Google Scholar 

  • M. Fromm, P. Weskamp and U. Hegel, Versatile piezoelectric driver for cell puncture, Pflügers Arch. 384, 69 (1980).

    Article  PubMed  CAS  Google Scholar 

  • D. M. Fry, A scanning electron microscope method for the examination of glass microelectrode tips either before or after use, Experientia 31, 695 (1975).

    Article  PubMed  CAS  Google Scholar 

  • M. Fujimoto and T. Kubota, Physicochemical properties of a liquid ion exchanger microelectrode and its application to biological fluids, Jap. J. Physiol. 26, 631 (1976).

    CAS  Google Scholar 

  • M. Fujimoto and M. Honda, A triple-barreled microelectrode for simultaneous measurements of intracellular Na+ and K+ activities and membrane potential in biological cells, Jap. J. Phys. 30, 859 (1980).

    CAS  Google Scholar 

  • M. Fujimoto, K. Naito and T. Kubota, Electrochemical profile for ion transport across the membrane of proximal tubular cells, Membr. Biochem. 3, 67 (1980).

    CAS  Google Scholar 

  • A. B. Fulton, How crowded is the cytoplasm?, Cell 30, 345 (1982).

    Article  PubMed  CAS  Google Scholar 

  • R. J. J. Funck, W. E. Morf, P. Schulthess, D. Ammann and W. Simon, Bicarbonate-sensitive liquid membrane electrodes based on neutral carriers for hydrogen ions, Anal.Chem. 54, 423 (1982)

    Article  CAS  Google Scholar 

  • K. W. Fung and K. H. Wong, Potassium-and caesium-selective PVC membrane electrodes based on bis-crown ethers, J. Electroanal. Chem. 111, 359 (1980).

    Article  CAS  Google Scholar 

  • D. G. Gadian, G. K. Radda, R. E. Richards and P.J. Seeley, 31P NMR in living tissue: the road from a promising to an important tool in biology, 1979, in Shulman 79, p. 463.

    Google Scholar 

  • D.G. Gadian, G. K. Radda, M.J. Dawson and D. R. Wilkie, pH, measurements of cardiac and skeletal muscle using 31P-NMR, 1982, in Nuccitelli and Deamer 82, p. 61.

    Google Scholar 

  • D.G. Gadian, Whole organ metabolism studied by NMR, Ann. Rev. Biophys. Bioeng. 12, 69 (1983).

    Article  CAS  Google Scholar 

  • V. P. Y. Gadzekpo, J. M. Hungerford, A. M. Kadry, Y. A. Ibrahim and G. D. Christian, Lipophilic lithium ion carrier in a lithium ion selective electrode, Anal. Chem. 57, 493 (1985).

    CAS  Google Scholar 

  • J. Gajowski, B. Rieckemann and F. Umland, Kaliumselektive Membranelektroden auf der Basis des Kryptanden [2B2B2], Fresenius Z. Anal. Chem. 309, 343 (1981).

    Article  CAS  Google Scholar 

  • M. Galvan, G.tenBruggencate and R.Senekowitsch, The effects of neuronal stimulation and ouabain upon extracellular K+ and Ca’ levels in rat isolated sympathetic ganglia, Brain Res. 160, 544 (1979).

    Article  PubMed  CAS  Google Scholar 

  • M. Galvan, P.Grafe and G.tenBruggencate, Convulsive actions of 4-amino-pyridine on neurones and extracellular K+ and Ca’+ activities in guinea-pig olfactory cortex slices, in: Physiology and Pharmacology of Epileptogenic Phenomena, M. Klee, ed., 1980.

    Google Scholar 

  • M. Galvan, A. Dörge, F. Beck and R. Rick, Intracellular electrolyte concentrations in rat sympathet- ic neurones measured with an electron microprobe, Pflügers Arch. 400, 274 (1984).

    Article  PubMed  CAS  Google Scholar 

  • S. M. Gamino and F.J. Alvarez-Leefmans, Intracellular free magnesium in Helix aspersa neurones, Soc. Neurosci. Abstr. 9, 513 (1983).

    Google Scholar 

  • S.M. Gamino and F.J. Alvarez-Leefmans, Microelectrodes containing the neutral ligand ETH1117 can be used for measuring cytoplasmic free magnesium, Biophys.J. 45, 87a (1984).

    Google Scholar 

  • J. F. Garcia-Diaz and W. McD. Armstrong, The steady-state relationship between sodium and chloride transmembrane electrochemical potential differences in Necturus gallbladder, J. Membr. Biol. 55, 213 (1980).

    Article  PubMed  CAS  Google Scholar 

  • A. R. Gardner-Medwin and C. Nicholson, Measurements of extracellular potassium and calcium concentration during passage of current across the surface of the brain, J. Physiol. 275, 668 (1977).

    Google Scholar 

  • P. B. Garlick, G. K. Radda and P.J. Seeley, Studies of acidosis in the ischaemic heart by phosphorus nuclear magnetic resonance, Biochem. J. 184, 547 (1979).

    PubMed  CAS  Google Scholar 

  • M.S. Gazzaniga and J. E. LeDoux, The Integrated Mind, Plenum Press, New York, London, 1978. M. S. Gazzaniga, The Bisected Brain, Meredith Corporation, New York, 1970.

    Google Scholar 

  • L. A. Geddes, Electrodes and the Measurement of Bioelectric Events, Wiley-Interscience, New York, London, Sydney, Toronto, 1972.

    Google Scholar 

  • J. Geibel, H. Völkl and F. Lang, A microelectrode for continuous recording of volume fluxes in isolated perfused tubule segments, Pflügers Arch. 400, 388 (1984).

    Article  PubMed  CAS  Google Scholar 

  • C. D. Geisler, E. N. Lightfoot, F. P. Schmidt and F. Sy, Diffusion effects of liquid-filled micropipettes: a pseudobinary analysis of electrolyte leakage, IEEE Trans. Biomed. Eng. 19, 372 (1972).

    Article  PubMed  CAS  Google Scholar 

  • G. Giebisch, T. Kubota and M.G. O’Regan, Ion-activity measurements in renal tubular epithelium, 1981, in Zeuthen 81 a, p.47.

    Google Scholar 

  • J.C. Gilkey, L. F. Jaffe, E.B. Ridgway and G.T. Reynolds, A free calcium wave traverses the activating egg of the medaka, Oryzias latipes, J. Cell. Biol. 76, 448 (1978).

    Article  PubMed  CAS  Google Scholar 

  • R.J. Gillies, J.R. Alger, J. A. den Hollander and R. G. Shulman, Intracellular pH measured by NMR: methods and results, 1982, in Nuccitelli and Deamer 82, p. 79.

    Google Scholar 

  • F. Giraldez, The sodium pump in Necturus gallbladder epithelium, 1985, in Kessler et al.85, p.138.

    Google Scholar 

  • D. Giulian and E.G. Diacumakos, The electrophysiological mapping of compartments within a mammalian cell, J. Cell. Biol. 72, 86 (1977).

    Article  PubMed  CAS  Google Scholar 

  • H. G. Glitsch and H. Pusch, On the electrogenic fraction of K-activated Na transport in sheep Purkinje fibres, Pflügers Arch.Suppl.to 392, Rl (1982).

    Google Scholar 

  • H. G. Glitsch, H. Pusch, T. Schumacher and F. Verdonck, An identification of the K activated Na pump current in sheep Purkinje fibres, Pflügers Arch. 394, 256 (1982).

    Article  PubMed  CAS  Google Scholar 

  • H.G. Glitsch and H. Pusch, Activation of the Na pump in sheep Purkinje fibres by external potassium at various temperatures, Pflügers Arch. Suppl. to 402, R23 (1984a).

    Google Scholar 

  • H. G. Glitsch and H. Pusch, On the temperature dependence of the Na pump in sheep Purkinje fibres, Pflügers Arch. 402, 109 (1984b).

    Article  PubMed  CAS  Google Scholar 

  • H. G. Glitsch and H. Pusch, On the temperature dependence of active Na transport in sheep Purkinje fibres, Pflügers Arch. Suppl.to 400, R5 (1984c).

    Google Scholar 

  • H. G. Glitsch, H. Pusch and T. Schumacher, Inhibition of the Na pump in sheep Purkinje fibres by external sodium, Pflügers Arch. Suppi. to 402, R22 (1984).

    Google Scholar 

  • H.G. Glitsch, H. Pusch and T. Schumacher, Temperature dependence of the cardiac Na+-K+ pump as studied by Na-sensitive microelectrodes, 1985, in Kessler et al. 85, p. 282.

    Google Scholar 

  • G. G. Globus, G. Maxwell and I. Savodnik, eds., Consciousness and The Brain, Plenum Press, New York, London, 1976.

    Google Scholar 

  • R. A. Gorkin and E. Richelson, Lithium ion accumulation by cultured glioma cells, Brain Res. 171, 365 (1979).

    Article  PubMed  CAS  Google Scholar 

  • A. L. F. Gorman, S. Levy, E. Nasi and D. Tillotson, Intracellular calcium measured with calcium-sensitive micro-electrodes and arsenazoIll in voltage-clamped Aplysia neurones, J. Physiol. 353, 127 (1984).

    PubMed  CAS  Google Scholar 

  • T. Gotow, M. Ohba and T. Tornita, Tip potential and resistance of micro-electrodes filled with KCI solution by boiling and nonboiling methods, IEEE Trans. Biomed. Eng. 24, 366 (1977)

    Article  PubMed  CAS  Google Scholar 

  • J. L. Gould, Magnetic field sensitivity in animals, Ann. Rev. Physiol. 46, 585 (1984).

    Article  CAS  Google Scholar 

  • P. Grafe, J. Rimpel, M. M. Reddy and G. tenBruggencate, Changes of intracellular sodium and po-tassium ion concentrations in frog spinal motoneurons induced by repetitive synaptic stimu-lation, Neurosci. 7, 3213 (1982a).

    Article  CAS  Google Scholar 

  • P. Grafe, J. Rimpel, M. M. Reddy and G. tenBruggencate, Lithium distribution across the membrane of motoneurons in the isolated frog spinal cord, Pflügers Arch. 393, 297 (1982b).

    Article  PubMed  CAS  Google Scholar 

  • P. Grafe, K. Ballanyi and G. tenBruggencate, Changes of intracellular free ion concentrations, evoked by carbachol or GABA, in rat sympathetic neurons, 1985, in Kessler et al. 85, p. 184.

    Google Scholar 

  • R. S. Greenwood, W. E. Dodson and S. Goldring, The effect of local anesthetics on the potassium ion-selective electrode, Brain Res. 165, 171 (1979).

    Article  PubMed  CAS  Google Scholar 

  • R. Greger, F. Lang and S. Silbernagel, eds., Renal Transport of Organic Substances, Springer Verlag, Berlin, Heidelberg, New York, 1981.

    Google Scholar 

  • R. Greger, H. Oberleithner, E. Schlatter, A. C. Cassola and C. Weidtke, Chloride activity in cells of isolated perfused cortical thick ascending limbs of rabbit kidney, Pflügers Arch. 399, 29 (1983)

    Article  PubMed  CAS  Google Scholar 

  • R. Greger and E. Schlatter, Properties of the lumen membrane of the cortical thick ascending limb of Henle’s loop of rabbit kidney, Pflügers Arch. 396, 315 (1983).

    Article  PubMed  CAS  Google Scholar 

  • R. Greger and E. Schlatter, Mechanism of NaCI secretion in rectal gland tubules of spiny dogfish (Squales acanthias). II. Effect of inhibitors, Pflügers Arch. 402, 364 (1984).

    Article  PubMed  CAS  Google Scholar 

  • R. Greger, C. Weidtke, E. Schlatter, M. Wittner and B. Gebler, Potassium activity in cells of isolated perfused cortical thick ascending limbs of rabbit kidney, Pflügers Arch. 401, 52 (1984a).

    Article  PubMed  CAS  Google Scholar 

  • R. Greger, E. Schlatter, F. Wang and J. N. Forrest, Jr., Mechanism of NaCI secretion in rectal gland tubules of spiny dogfish (Squales acanthias). III. Effects of stimulation of secretion by cyclic AMP, Pflügers Arch. 402, 376 (1984b).

    Article  PubMed  CAS  Google Scholar 

  • R. Greger and E. Schlatter, Electrolyte activities in Cltransporting epithelia: cortical thick ascending limb of rabbit nephron and rectal gland tubules of the spiny dogfish, Squalus acanthias, 1985, in Kessler et al. 85, p. 301.

    Google Scholar 

  • E. Grell, Elementary steps and dynamic aspects of carrier-mediated cation transport through membranes: the streptogramin antibiotics (group B), 1977, in Biochemistry of Membrane Transport, G. Semenza and E. Carafoli, eds., Springer Verlag, Berlin, Heidelberg, New York, 1977, p. 147.

    Chapter  Google Scholar 

  • N. Gresh, P. Claverie and A. Pullman, Intermolecular interactions: reproduction of the results of ab initio supermolecule computations by an additive procedure, Int. J. Quant. Chem.: Quant. Chem. Symp. 13, 243 (1979).

    CAS  Google Scholar 

  • A. Griffin and J. A. Sechzer, Mandatory versus voluntary regulation of biomedical research, 1983, in Sechzer 83, p. 187.

    Google Scholar 

  • T. H. Grove, J.J. H. Ackerman, G. K. Radda and P.J. Bore, Analysis of rat heart in vivo by phosphorus nuclear magnetic resonance, Proc. Natl. Acad. Sci. USA 77, 299 (1980).

    Article  PubMed  CAS  Google Scholar 

  • M. Güggi, U. Fiedler, E. Pretsch and W. Simon, A lithium ion-selective electrode based on a neutral carrier, Anal. Letters 8, 857 (1975).

    Google Scholar 

  • M. Güggi, M. Oehme, E. Pretsch and W. Simon, Neutraler Ionophor für Flüssigmembranelektroden mit hoher Selektivität für Natrium-gegenüber Kalium-Ionen, Heiv. Chim. Acta 59, 2417 (1976).

    Article  Google Scholar 

  • M. Güggi, E. Pretsch and W. Simon, A barium ion-selective electrode based on the neutral carrier N,N,N’,N’-tetraphenyl-3,6,9-trioxaundecane diamide, Anal. Chim. Acta 91, 107 (1977).

    Article  Google Scholar 

  • G. G. Guilbault, R. A. Durst, M.S. Frant, H. Freiser, E. H. Hansen, T. S. Light, E. Pungor, G. Rechnitz, N. M. Rice, T.J. Rohm, W. Simon and J. D. R. Thomas, Recommendations for nomenclature of ion-selective electrodes, Pure Appt Chem. 48, 127 (1976).

    Article  Google Scholar 

  • B. L. Gupta and T. A. Hall, Quantitative electron probe X-ray microanalysis of electrolyte elements within epithelial tissue compartments, Fed. Proc. 38, 144 (1979).

    CAS  Google Scholar 

  • B. L. Gupta, T. A. Hall, S. H. P. Maddrell and R. B. Moreton, Distribution of ions in a fluid-trans-porting epithelium determined by electron-probe X-ray microanalysis, Nature 264, 284 (1976)

    Article  PubMed  CAS  Google Scholar 

  • R. K. Gupta and P. Gupta, Direct observation of resolved resonances from intra-and extracellularsodium-23-ions in NMR studies of intact cells and tissues using dysprosium(III) tripoly phos-phate as paramagnetic shift reagent, J. Magn. Res. 47, 344 (1982).

    CAS  Google Scholar 

  • R. K. Gupta and R. D. Moore, 31P NMR studies of intracellular free Mg’“ in intact frog skeletal muscle, J. Biol. Chem. 255, 3987 (1980).

    PubMed  CAS  Google Scholar 

  • R. K. Gupta and W. D. Yushok, Noninvasive 31P NMR probes of free Mg’-+, Mg ATP, and Mg ADP in intact Ehrlich ascites tumor cells, Proc. Natl.Acad.Sci. 77, 2487 (1980).

    Article  CAS  Google Scholar 

  • H. L. Haas and J. G. R. Jefferys, Low-calcium field burst discharges of CA1 pyramidal neurones in rat hippocampal slices, J. Physiol. 354, 185 (1984).

    PubMed  CAS  Google Scholar 

  • A. Hämmerli, J. Janata and H.M. Brown, Ion-selective electrode for intracellular potassium measurements, Anal. Chem. 52, 1179 (1980).

    Google Scholar 

  • M. L. Hair and W. Hertl, Reactions of chlorosilanes with silica surfaces, J. Phys. Chem. 73, 2372 (1969).

    Article  CAS  Google Scholar 

  • W.J. Hamer and Y.-C. Wu, Osmotic coefficients and mean activity coefficients of uni-univalent electrolytes in water at 25 ° C, J. Phys. Chem. Ref. Data 1, 1047 (1972).

    Article  CAS  Google Scholar 

  • O. P. Hamill, A. Marty, E. Neher, B. Sakmann and F. J. Sigworth, Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pflügers Arch. 391, 85 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Handbook of Chemistry and Physics, 56th ed., Chemical Rubber Publ. Co., Cleveland, Ohio, 1975–76, p. D-153.

    Google Scholar 

  • C. Hansch and A. Leo, Substituent Constants For Correlation Analysis in Chemistry and Biology, J. Wiley and Sons, New York, Chichester, Brisbane, Toronto, 1979.

    Google Scholar 

  • A.J. Hansen, Extracellular ion concentration in cerebral ischemia, 1981, in Zeuthen 81 a, p.239.

    Google Scholar 

  • A. J. Hansen and. T. Zeuthen, Extracellular ion concentrations during spreading depression and ischemia in the rat brain cortex, Acta Physiol. Scand. 113, 437 (1981).

    CAS  Google Scholar 

  • H. H. Harary and J. E. Brown, Spatially nonuniform changes in intracellular calcium ion concentrations, Science 224, 292 (1984).

    Article  PubMed  CAS  Google Scholar 

  • M. C. Harman and P. A. Poole-Wilson, A liquid ion-exchange intracellular pH microelectrode, J. Physiol. 315, 1 P (1981).

    Google Scholar 

  • K. M. Harris and T. J. Teyler, Developmental onset of long-term potentiation in area CAl of the rat hippocampus, J. Physiol. 346, 27 (1984).

    PubMed  CAS  Google Scholar 

  • R. J. Harris and L. Symon, A double ion sensitive micro-electrode for extracellular cerebral cortical measurements, J. Physiol. 312, 3 P (1981).

    Google Scholar 

  • R. J. Harris, L. Symon, N. M. Branston and M. Bayhan, Changes in extracellular calcium activity in cerebral ischaemia, J. Cerebral Blood Flow Metab. 1, 203 (1981).

    Article  CAS  Google Scholar 

  • R.J. Harris, M. Bayhan, N. M. Branston, A. Watson and L. Symon, Modulation of the pathophysiology of primate focal cerebral ischaemia by indomethacin, Stroke 13, 17 (1982).

    Article  PubMed  CAS  Google Scholar 

  • R. K. Harris and B. E. Mann, NMR and the Periodic Table, Academic Press, London, New York, San Francisco, 1978.

    Google Scholar 

  • K. Hartman, S. Luterotti, H. F. Osswald, M. Oehme, P.C. Meier, D. Ammann and W. Simon, Chloride-selective liquid-membrane electrodes based on lipophilic methyl-tri-N-alkyl-ammonium compounds and their applicability to blood serum measurements, Mikrochim. Acta 1978, 1, 235.

    Google Scholar 

  • B. J. Harvey and R. P. Keman, Sodium-selective micro-electrode study of apical permeability in frog skin: effects of sodium amiloride and ouabain, J.Physiol. 356, 359 (1984a).

    PubMed  CAS  Google Scholar 

  • B.J. Harvey and R. P. Keman, Intracellular ion activities in frog skin in relation to external sodium and effects of amiloride and/or ouabain, J. Physiol. 349, 501 (1984b).

    PubMed  CAS  Google Scholar 

  • J. W. Hastings, G. Mitchell, P. H. Mattingly, J. R. Blinks and M. VanLeeuwen, Response of aequorin bioluminescence to rapid changes in calcium concentration, Nature 222, 1047 (1969).

    Article  PubMed  CAS  Google Scholar 

  • C. F. Hazlewood, ed., Physicochemical state of ions and water in living tissues and model systems, Ann. New York Acad. Sci. 204, 1 (1973).

    Google Scholar 

  • N.C. Hebert, Properties of microelectrode glasses, 1969, in Lavallée et al.69, p.25.

    Google Scholar 

  • U. Heinemann, H. D. Lux and M.J. Gutnick, Extracellular free calcium and potassium during paroxysmal activity in the cerebral cortex of the cat, Exp. Brain Res. 27, 237 (1977).

    PubMed  CAS  Google Scholar 

  • U. Heinemann, A. Konnerth and H. D. Lux, Changes in extracellular free Ca2+ and K+ activity in epileptogenic alumina cream focus in the cerebral cortex of cats, Neurosci. Letters, Suppl. 1, 63 (1978a).

    Google Scholar 

  • U. Heinemann, H. D. Lux and M.J. Gutnick, Changes in extracellular free calcium and potassium activity in the somatosensory cortex of cats, in Abnormal Neuronal Discharges, N. Chalazonitis and M. Boisson, eds., Raven Press, New York, 1978b, p.329.

    Google Scholar 

  • U. Heinemann and A. Konnerth, Changes in extracellular free Ca’+ during epileptic activity in chronic alumina cream foci in cats, in Advances in Epileptology, R. Canger, F. Angeleri and J. K. Penry, eds., Raven Press, New York, 1980, p. 371.

    Google Scholar 

  • U. Heinemann and R. Pumain, Extracellular calcium activity changes in cat sensorimotor cortex induced by iontophoretic application of aminoacids, Exp. Brain Res. 40, 247 (1980).

    Article  PubMed  CAS  Google Scholar 

  • U. Heinemann and R. Pumain, Changes in extracellular free Ca2+ in the sensorimotor cortex of cats during electrical stimulation and iontophoretic application of amino-acids, 1981 a, in Sykovâ et al.81, p.235.

    Google Scholar 

  • U. Heinemann and R. Pumain, Effects of tetrodotoxin on changes in extra-cellular free calcium induced by repetitive electrical stimulation and iontophoretic application of excitatory amino acids in the sensorimotor cortex of cats, Neurosci. Letters 21, 87 (1981b).

    CAS  Google Scholar 

  • U. Heinemann, A. Konnerth and H. D. Lux, Stimulation induced changes in extracellular free calcium in normal cortex and chronic alumina cream foci of cats, Brain Res. 213, 246 (1981).

    Article  PubMed  CAS  Google Scholar 

  • U. Heinemann, A. Konnerth, J. Louvel, H. D. Lux and R. Pumain, Changes in extracellular free Ca’-+ in normal and epileptic sensorimotor cortex of cats, in Physiology and Pharmacology of Epileptogenic Phenomena, M. R. Klee et al., eds., Raven Press, New York, 1982, p. 29.

    Google Scholar 

  • U. Heinemann and J. D. C. Lambert, NMDA and quisqualate induced neuronal depolarisations and changes in extracellular Na+, Mg2+ and Ca’-+ concentrations in area CAI of in vitro hippocampal slices, Pflügers Arch. Suppl. to 402, R30 (1984).

    Google Scholar 

  • J. M. Heiple and D. L. Taylor, An optical technique for measurement of intracellular pH in single living cells, 1982, in Nuccitelli and Deamer 82, p. 21.

    Google Scholar 

  • P. Henderson, Zur Thermodynamik der Flüssigkeitsketten, Z. Phys. Chem. 59, 118 (1907).

    CAS  Google Scholar 

  • W. Hertl, Mechanism of gaseous siloxane reaction with silica, J. Phys.Chem. 72, 1248 (1968a)

    Article  CAS  Google Scholar 

  • W. Hertl, Mechanism of gaseous siloxane reaction with silica, J. Phys. Chem. 72, 3993 (1968b).

    Article  CAS  Google Scholar 

  • W. Hertl and M. L. Hair, Reaction of hexamethyldisilazane with silica, J. Phys. Chem. 75, 2181 (1971).

    Article  Google Scholar 

  • P. Hess and R. Weingart, Intracellular free calcium modified by pH, in sheep cardiac Purkinje fibres, J. Physiol. 307, 60 P (1980).

    Google Scholar 

  • P. Hess and R. Weingart, Free magnesium in cardiac and skeletal muscle measured with ion-selective micro-electrodes, J. Physiol. 318, 14 P (1981).

    Google Scholar 

  • P. Hess, P. Metzger and R. Weingart, Free magnesium in sheep, ferret and frog striated muscle at rest measured with ion-selective micro-electrodes, J. Physiol. 333, 173 (1982).

    PubMed  CAS  Google Scholar 

  • D. Heuser, J. Astrup, N. A. Lassen, B. Nilsson, K. Norberg and B. K. Siesjö, Are H+ and K+ factors for the adjustment of cerebral blood flow to changes in functional state: a microelectrode study, Acta Neurologica Scandinavica, Supplementum 64, 56, 216 (1977).

    CAS  Google Scholar 

  • D. Heuser, The significance of cortical extracellular H+, K+ and Ca’-+ activities for regulation of local cerebral blood flow unter conditions of enhanced neuronal activity, in Cerebral Vascular Smooth Muscle and Its Control, Ciba Foundation Symp. 56, Elsevier, Excerpta Medica, North-Holland, Amsterdam, Oxford, New York, 1978, p. 339.

    Google Scholar 

  • D. Heuser, Local ionic control of cerebral microvessels, 1981, in Zeuthen 81 a, p.85.

    Google Scholar 

  • C. B. Heyer and H. D. Lux, Unusual properties of the Ca-K system responsible for prolonged action potentials in neurons from the snail Helix pomatia, in Abnormal Neuronal Discharges, N. Chalazonitis and M. Boisson, eds., Raven Press, New York, 1978, p. 311.

    Google Scholar 

  • J. T. Higgins, Jr., B. Gebler and E. Frömter, Electrical properties of amphibian urinary bladder ep-ithelia. II. The cell potential profile in Necturus maculosus, Pflügers Arch. 371, 87 (1977).

    Article  PubMed  CAS  Google Scholar 

  • J. L. Hill, L. S. Gettes, M. R. Lynch and N.C. Hebert, Flexible valinomycin electrodes for on-line determination of intravascular and myocardial K+, Am. J. Physiol. 235, H455 (1978).

    PubMed  CAS  Google Scholar 

  • J. A. M. Hinke, Glass microelectrodes for measuring intracellular activities of sodium and potassium, Nature 184, 1257 (1959).

    Article  PubMed  CAS  Google Scholar 

  • J. A. M. Hinke, Cation-selective microelectrodes for intracellular use, 1967, in Eisenman 67, p. 464

    Google Scholar 

  • P. Hník, E. Sykovâ, N. Ki and F. Vyskocil, Determination of ion activity changes in excitable tissues with ion-selective microelectrodes, 1980, in Koryta 80, p. 129.

    Google Scholar 

  • A. L. Hodgkin and R. D. Keynes, The mobility and diffusion coefficient of potassium in giant axons from sepia, J. Physiol. 119, 513 (1953).

    PubMed  CAS  Google Scholar 

  • G. Hofmeier and H. D. Lux, Time courses of intracellular free calcium and related electrical effects after injection of CaCl2, Pflügers Arch., Suppl. to Vol. 373, R47 (1978).

    Google Scholar 

  • G. Hofmeier and H. D. Lux, Intracellular applications of Ca-selective microelectrodes in voltage-clamped snail neurons, 1981 a, in Lubbers et al. 81, p. 127.

    Google Scholar 

  • G. Hofmeier and H. D. Lux, The time courses of intracellular free calcium and related electrical effects after injection of CaCI, into neurons of the snail, Helix pomatia. Pflügers Arch. 391, 242 (1981b).

    Article  PubMed  CAS  Google Scholar 

  • G. Hofmeier and H. D. Lux, the depolarizing action of calcium injected into snail neurons - a mechanism contributing to epileptogenesis, in Physiology and Pharmacology of Epileptogenic Phenomena, M. R. Klee et al., eds., Raven Press, New York, 1982, p. 299.

    Google Scholar 

  • F. Hofmeister, Zur Lehre von der Wirkung der Salze, Archiv. Exp. Pathol.Pharmakol. 24, 247 (1888).

    Article  Google Scholar 

  • P. M. Hofstetter, Korrelation des elektrochemischen Verhaltens eines Thioamids als Ionencarrier mit seiner Austauschgeschwindigkeit in Übergangs-und B-Metallkomplexen, Thesis, ETH Zürich No.7128, ADAG Administration und Druck AG Zürich, 1982.

    Google Scholar 

  • P. Hofstetter, E. Pretsch and W. Simon, NMR-Spektroskopische Untersuchungen der kinetischen Limitierung der Kationenselektivität eines cadmiumselektiven Ionophors, Helv.Chim.Acta 66, 2103 (1983).

    Article  CAS  Google Scholar 

  • P. Horowitz and W. Hill, The Art of Electronics, Cambridge University Press, Cambridge, London, New York, New Rochelle, Melbourne, Sydney, 1980.

    Google Scholar 

  • S. B. Horowitz and P. L. Paine, Reference phase analysis of free and bound intracellular solutes. II. Isothermal and isotopic studies of cytoplasmic sodium, potassium, and water, Biophys. J. 25, 45 (1979).

    CAS  Google Scholar 

  • S. B. Horowitz, P. L. Paine, L. Tluczek and J. K. Reynhout, Reference phase analysis of free and bound intracellular solutes. I. Sodium and potassium in amphibian oocytes, Biophys.J. 25, 33 (1979).

    Article  PubMed  CAS  Google Scholar 

  • G. Horvai, T. A. Nieman and E. Pungor, Low resistance liquid membrane ion-selective electrodes, 1985, in Ion-Selective Electrodes, E. Pungor and I. Buzâs, eds., Akadémiai Kiadó, Budapest 1985, p. 439.

    Google Scholar 

  • F. Huguenin, Some aspects of non-ionic permeation of NH3 and CO, in mammalian skeletal muscle, 1985, in Kessler et al. 85, p. 236.

    Google Scholar 

  • A. Hulanicki and R. Lewandowski, Some properties of ion-selective electrodes based on poly(vinyl chloride) membranes with liquid-ion-exchanger, Chem. Anal. 19, 53 (1974).

    CAS  Google Scholar 

  • T. Jacobsen, E.M. Skou and S. Athlung, On the definition of single ion activities, Electrochim. Acta 20, 523 (1975).

    CAS  Google Scholar 

  • W. E. Jacobus, I. H. Pores, S. K. Lucas, C. H. Kallman, M. L. Weisfeldt and J. T. Flaherty, The role of intracellular pH in the control of normal and ischemic myocardial contractility: A 31P nuclear magnetic resonance and mass spectrometry study, 1982, in Nuccitelli and Deamer 82, p. 537.

    Google Scholar 

  • Z. Janka, I. Szentistvânyi, A. Juhâsz and A. Rimanóczy, Steady-state distribution of lithium during cultivation of dissociated brain cells, Experientia 36, 1071 (1980).

    Article  PubMed  CAS  Google Scholar 

  • J. Janus, E.-J. Speckmann and A. Lehmenkühler, Relations between extracellular K+ and Ca’+ activities and local field potentials in the spinal cord of the rat during focal and generalized seizure discharges, 1981, in Sykovâ et aí. 81, p. 181.

    Google Scholar 

  • J. Janus and A. Lehmenkühler, Changes of extracellular chloride, sodium and calcium activities during stimulus-induced DC potential shifts in the CNS, Pflügers Arch. 389, R18 (1981a).

    Google Scholar 

  • J. Janus and A. Lehmenkühler, A simple procedure for response time reduction of liquid ion-ex-changer microelectrodes, Pflügers Arch. 389, R32 (1981b).

    Google Scholar 

  • G.J. Janz and R. P. T. Tomkins, Nonaqueous Electrolytes Handbook, Vol. 1, Academic Press, New York, London, 1972.

    Google Scholar 

  • A. Jaramillo, S. Lopez, J. B. Justice, Jr., J. D. Salamone and D. B. Neill, Acetylcholine and choline ion-selective microelectrodes, Anal.Chim.Acta 146, 149 (1983).

    Article  CAS  Google Scholar 

  • H. Jenny, T. R. Nielsen, N. T. Coleman and D. E. Williams, Concerning the measurements of pH, ion activities, and membrane potentials in colloidal systems, Science 112, 164 (1950).

    Article  PubMed  CAS  Google Scholar 

  • H.-B. Jenny, D. Ammann, R. Dorig, B. Magyar, R. Asper and W. Simon, Neutral carrier based ion-selective electrode for the determination of Na+ in urine, Mikrochim. Acta 1980 II, 125 (1980a).

    Google Scholar 

  • H.-B. Jenny, C. Riess, D. Ammann, B. Magyar, R. Asper and W. Simon, Determination of K+ in di- luted and undiluted urine with ion-selective electrodes, Mikrochim. Acta 1980 II, 309 (1980b).

    Google Scholar 

  • M. Joffre, P. Mollard, P. Régondaud, J. Alix, J. P. Poindessault, A. Malassiné and Y. M. Gargouil, Electrophysiological study of single Leydig cells freshly isolated from rat testis. I. Technical approach and recordings of the membrane potential in standard solution, Pflügers Arch. 401, 239 (1984).

    Article  PubMed  CAS  Google Scholar 

  • G. Isenberg and G. Dahl, Ultrastructural changes of the gap junction correlated with increased longitudinal resistance (Purkinje fibre), Abstracts of the 49th Meeting of the Deutsche Physiologische Gesellschaft, Springer International, 1978, p. R9.

    Google Scholar 

  • G. Isenberg, Risk and advantages of using strongly beveled microelectrodes for electrophysiological studies in cardiac Purkinje fibers, Pflügers Arch. 380, 91 (1979).

    Article  PubMed  CAS  Google Scholar 

  • G. Isenberg and U. Klockner, Calcium tolerant ventricular myocytes prepared by preincubation in “KB medium”, Pflügers Arch. 395, 6 (1982).

    Article  PubMed  CAS  Google Scholar 

  • R. Jung, Perception, consciousness and visual attention, 1978, in Buser and Rougeul-Buser 78, p. 15.

    Google Scholar 

  • IUPAC Commission on Analytical Nomenclature (prepared for publication by G.G. Guilbault), Recommendations for publishing manuscripts on ion-selective electrodes, Ion-Selective Electrode Rev. 1, 139 (1979).

    Google Scholar 

  • K. Kafoglis, S. J. Hersey and J. F. White, Microelectrode measurement of K+ and pH in rabbit gastric glands: effect of histamine, Am.J. Physiol. 246, G433 (1984).

    PubMed  CAS  Google Scholar 

  • L. Kaufman, Y.Okada, J. Tripp and H. Weinberg, Evoked neuromagnetic fields, Ann. New York Acad. Sci. 425, 722 (1984).

    Article  CAS  Google Scholar 

  • M. Kessler, L. C. Clark, Jr., D. W. Lubbers, I. A. Silver and W. Simon, eds., Ion and Enzyme Elec-trodes in Biology and Medicine, Urban and Schwarzenberg, München, Berlin, Wien, 1976a.

    Google Scholar 

  • M. Kessler, K. Häjek and W. Simon, Four-barrelled microelectrode for the measurement of potassi-um-, sodium-and calcium-ion activities, 1976 b, in Kessler et al. 76a, p. 136.

    Google Scholar 

  • M. Kessler, J. Höper, D. Schäfer and R. Strehlau, Measurements of extracellular and of interstitial cation activity (pK, pNa, pCa) with ion-selective electrodes, Biblioth.Anatomica 15, 237 (1977).

    Google Scholar 

  • M. Kessler, D. K. Harrison and J. Höper, eds., Ion Measurements in Physiology and Medicine, Springer Verlag, Berlin, Heidelberg, New York, Tokyo, 1985.

    Google Scholar 

  • R. N. Khuri, Cation and hydrogen microelectrodes in single nephrons, 1969, in Lavallée 69, p. 272

    Google Scholar 

  • R. N. Khuri, S. K. Agulian, K. Bogharian, R. Nassar and W. Wise, Intracellular bicarbonate in single cells of Necturus kidney proximal tubule, Pflügers Arch. 349, 295 (1974).

    Article  PubMed  CAS  Google Scholar 

  • R. N. Khuri, S. M. Agulian, E. L. Boulpae, W. Simon and G. Giebisch, Changes in the intracellular electrochemical potential of Na+, K+ and Cl - in single cells of the proximal tubule of the Necturus kidney induced by rapid changes in the extracellular perfusion fluids, Arzneim.Forsch./Drug Res. 28, 878 (1978).

    Google Scholar 

  • R. N. Khuri, Electrochemistry of the nephron, in Membrane Transport in Biology, G. Giebisch, D.C. Tosteson and H.H. Ussing, eds., Vol. 4A, Springer Verlag, Berlin, Heidelberg, New York, 1979, p. 47.

    Google Scholar 

  • R. N. Khuri and S. K. Agulian, Intracellular electro-chemical studies of single renal tubule cells and muscle fibers, 1981, in Lubbers et al.81, p.195.

    Google Scholar 

  • K. Kimura, T. Maeda, H.Tamura and T. Shono, Potassium-selective PVC membrane electrodes based on bis-and poly(crown ether)s, J. Electroanal. Chem. 95, 91 (1979a).

    Article  CAS  Google Scholar 

  • K. Kimura, H.Tamura and T.Shono, Caesium-selective PVC membrane electrodes based on bis(crown ether)s, J. Electroanal. Chem. 105, 335 (1979b).

    Article  CAS  Google Scholar 

  • K. Kimura, H. Tamura and T. Shono, A highly selective ionophore for potassium ions: a lipophilic bis(15-crown-5) derivative, J. Chem. Soc.,Chem. Commun. 1983, 492.

    Google Scholar 

  • N. N. L. Kirsch, Die Bedeutung von Komplexbildungs-und Extraktionsgleichgewichten für die Alkali-und Erdalkaliionenselektivitüt von Flüssigmembranelektroden beruhend auf azyklischen, ungeladenen Liganden, Thesis, ETH Zürich No. 5842, Juris Druck Verlag, Zürich, 1976.

    Google Scholar 

  • N. N. L. Kirsch and W. Simon, Komplexbildung von lonophoren vom Typ der Dioxakorksäurediamide mit Alkali-und Erdalkaliionen. Stabilitätskonstanten in Aethanol. HeIv. Chim. Acta 59, 357 (1976).

    Article  CAS  Google Scholar 

  • T. R. Kissel, J. R. Sandifer and N. Zumbulyadis, Sodium binding in human serum, Clin. Chem. 28, 449 (1982).

    CAS  Google Scholar 

  • S. Kitazawa, K. Kimura, H. Yano and T. Shono, Lipophilic crown-4 derivatives as lithium ionophores, J. Am. Chem. Soc. 106, 6978 (1984).

    Article  CAS  Google Scholar 

  • S. Kitazawa, K. Kimura, H. Yano and T. Shono, Lithium-selective polymeric membrane electrodes based on dodecylmethyl-14-crown-4, Analyst 110, 295 (1985).

    Article  PubMed  CAS  Google Scholar 

  • H. H. Kornhuber, A reconsideration of the brain-mind problem, 1978, in Buser and Rougeul-Buser 78, p. 319.

    Google Scholar 

  • G. Kortüm, Lehrbuch der Elektrochemie, Verlag Chemie, Weinheim, 1972.

    Google Scholar 

  • J. Koryta, Medical and Biological Applications of Electrochemical Devices, John Wiley and Sons, Chichester, New York, Brisbane, Toronto, 1980.

    Google Scholar 

  • J. Koryta and K. Stulik, Ion-Selective Electrodes, 2“d edition, Cambridge University Press, Cambridge, London, New York, New Rochelle, Melbourne, Sidney, 1983.

    Google Scholar 

  • P. G. Kostyuk and Z. A. Sorokina. On the mechanism of hydrogen ion distribution between cell protoplasm and the medium, in Membrane Transport Metabolism, A. Kleinzeller and A. Kotyk, eds., Academic, New York, 1961, p. 193.

    Google Scholar 

  • K. Kotera, N. Satake, M. Honda and M. Fujimoto, The measurement of intracellular sodium activities in the bullfrog by means of double-barreled sodium liquid ion-exchanger microelectrodes, Membr. Biochem. 2, 323 (1979).

    CAS  Google Scholar 

  • R. P. Kraig and C. Nicholson, Sodium liquid ion exchanger microelectrode used to measure large extracellular sodium transients, Science 194, 725 (1976).

    Article  PubMed  CAS  Google Scholar 

  • R. P. Kraig and C. Nicholson, Extracellular ionic variations during spreading depression, Neurosci. 3, 1045 (1978).

    Article  CAS  Google Scholar 

  • R. P. Kraig, C. R. Ferreira-Filho and C. Nicholson, Alkaline and acid transients in cerebellar micro-environment, J.Neurophysiol. 49, 831 (1983).

    PubMed  CAS  Google Scholar 

  • S. Krasne, G. Eisenman and G. Szabo, Freezing and melting of lipid bilayers and the mode of action of nonactin, valinomycin, and gramicidin, Science 174, 412 (1971).

    Article  PubMed  CAS  Google Scholar 

  • R. H. Kretsinger, The informational role of calcium in the cytosol, in Advances in Cyclic Nucleo-tide Research, P. Greengard and G. A. Robison, eds., Vol. 11, Raven Press, New York, 1979, p. 1

    Google Scholar 

  • B. R. Kripke and T. E. Ogden, A technique for beveling fine micropipettes, Electroencepha-logr.Clin. Neurophysiol. 36, 323 (1974).

    CAS  Google Scholar 

  • N. Kfiz and E. Sykovâ, Sensitivity of K+-selective microelectrodes to pH and some biologically active substances, 1981, in Sykovâ et al. 81, p. 25.

    Google Scholar 

  • K. Krnjevié, J. F. Mitchell and J. C. Szerb, Determination of iontophoretic release of acetylcholine from micropipettes, J. Physiol. 165, 421 (1963).

    Google Scholar 

  • K. Krnjevié, M. E. Morris and R.J. Reiffenstein, Changes in extracellular Ca’-+ and K+ activity accompanying hippocampal discharges, Can. J. Physiol. Pharmacol. 58, 579 (1980).

    Article  Google Scholar 

  • K. Krnjevié and M. E. Morris, Electrical and functional correlates of changes in transmembrane ionic gradients produced by neural activity in the central nervous system, 1981, in Zeuthen 81 a, p.195.

    Google Scholar 

  • K. Krnjevié, M. E. Morris and J. F. MacDonald, Free Ca-+ inside cat motoneurons at rest and during activity, Can. Physiol. 13, 108 (1982).

    Google Scholar 

  • R. V. Krstie, Ultrastruktur der Säugetierzelle, Springer Verlag, Berlin, Heidelberg, New York, 1976.

    Google Scholar 

  • H.S. Kruth, Flow cytometry: rapid biochemical analysis of single cells, Anal. Biochem. 125, 225 (1982).

    CAS  Google Scholar 

  • G. Kuchler, H. Beyer, M. Himmel and B. Menem, Zur Frage der Übertragungseigenschaften von Glasmikroelektroden bei der intracellulären Membranpotentialmessung, Pflügers Arch. 280, 210 (1964).

    Article  Google Scholar 

  • A. Kurkdjian and J. Guern, Vacuolar pH measurement in higher plant cells, Plant. Physiol. 67, 953 (1981).

    CAS  Google Scholar 

  • A. Kurkdjian, Y. Mathieu and J. Guern, Evidence for an action of 2,4-dichlorophenoxyacetic acid on the vacuolar pH of Acer pseudoplatanus in suspension culture, Plant. Sci. Lett. 27, 77 (1982).

    Article  CAS  Google Scholar 

  • A. C. Kurkdjian and H. Barbier-Brygoo, A hydrogen ion-selective liquid-membrane microelectrode for measurement of the vacuolar pH of plant cells in suspension culture, Anal. Biochem. 132, 96 (1983).

    CAS  Google Scholar 

  • A. Kurkdjian, H. Quiquampoix, H. Barbier-Brygoo, M. Péan, P. Manigault and J. Guern, Critical evaluation of methods for estimating the vacuolar pH of plant cells, in Biochemistry and Function of Vacuolar ATPase in Fungi and Plants, B. P. Martin, ed., Springer Verlag, 1985, in press.

    Google Scholar 

  • K. Kusano, R. Miledi and J. Stinnakre, Cholinergic and catecholaminergic receptors in the Xenopus oocyte membrane, J. Physiol. 328, 143 (1982).

    PubMed  CAS  Google Scholar 

  • J. H. Ladenson, Direct potentiometric analysis of sodium and potassium in human plasma: evidence for electrolyte interaction with a nonprotein, protein-associated substance(s), J. Lab. Clin. Med. 90, 654 (1977).

    PubMed  CAS  Google Scholar 

  • M.G. Lado, S. S. Sheu and H. A. Fozzard, Changes in intracellular Ca= + activity with stimulation in sheep cardiac Purkinje strands, Am. J. Physiol. 243, H133 (1982).

    PubMed  CAS  Google Scholar 

  • M. Läubli, O. Dinten, E. Pretsch and W. Simon, Barium selective electrodes based on neutral carriers and their use in the titration of sulfate, Anal. Chem. 57, 2756 (1985).

    Google Scholar 

  • P.J. Laming and M. B. A. Djamgoz, A comparison of the selectivities of micro-electrodes incorporating the Orion and Corning liquid ion exchangers for potassium over sodium, J. Neurosci. Methods 8, 399 (1983).

    Article  PubMed  CAS  Google Scholar 

  • F. Lang, W. Wang, H. Oberleithner and S. Neuman, Effect of luminal glucose on cell membrane potential and sodium electrochemical gradient in the absence and presence of ouabain, Pflügers Arch. Suppl. to 394, R22 (1982).

    Google Scholar 

  • F. Lang, G. Messner, W. Wang and H. Oberleithner, Interaction of intracellular electrolytes and tubular transport, Klin. Wochenschr. 61, 1029 (1983).

    Article  CAS  Google Scholar 

  • F. Lang, G. Messner, W. Wang, M. Paulmichl, H. Oberleithner and P. Deetjen, The influence of intracellular sodium activity on the transport of glucose in proximal tubule of frog kidney, Pflügers Arch. 401, 14 (1984).

    Article  PubMed  CAS  Google Scholar 

  • F. Lang, G. Messner, W. Wang and H. Oberleithner, The effect of ouabain on intracellular ion activities, membrane resistances, and sodium-coupled transport processes, 1985, in Kessler et al. 85, p. 309.

    Google Scholar 

  • F. Lanter, D. Erne, D. Ammann and W. Simon, Neutral carrier based ion-selective electrode for intracellular magnesium activity studies, Anal. Chem. 52, 2400 (1980).

    CAS  Google Scholar 

  • F. Lanter, R. A. Steiner, D. Ammann and W. Simon, Critical evaluation of the applicability of neu-

    Google Scholar 

  • tral carrier-based calcium selective microelectrodes, Anal. Chim. Acta 135, 51 (1982).

    Article  Google Scholar 

  • F. Lanter, Herstellung und Charakterisierung von ionenselektiven Carrier-Flüssigmembranmikro-elektroden für intra-und extrazelluläre Aktivitätsbestimmungen von physiologisch relevanten Kationen, Thesis ETH Zürich, No. 7076, Juris Druck + Verlag, Zürich, 1982.

    Google Scholar 

  • U. V. Lassen, A.-M. T. Nielsen, L. Pape and L. O. Simonsen, The membrane potential of Ehrlich ascites tumor cells. Microelectrode measurements and their critical evaluation, J.Membr. Biol. 6, 269 (1971).

    Google Scholar 

  • U. V. Lassen and O. Sten-Knudsen, Direct measurements of membrane potential and membrane resistance of human red cells, J. Physiol. 195, 681 (1968).

    PubMed  CAS  Google Scholar 

  • P. Latimer, Light scattering vs. microscopy for measuring average cell size and shape, Biophys.J. 27, 117 (1979).

    Article  PubMed  CAS  Google Scholar 

  • M. Lavallée, Intracellular pH of rat atrial muscle fibres measured by glass micropipette electrodes, Circ. Res. 15, 185 (1964).

    Google Scholar 

  • M. Lavallée. Schanne and N.C. Hebert, eds., Glass Microelectrodes, John Wiley and Sons, Inc., New York, London, Sidney, Toronto, 1969.

    Google Scholar 

  • M. Lavallée and G. Szabo, The effect of glass surface conductivity phenomena on the tip potential of glass micropipette electrodes 1969, in Lavallée et aí. 69, p. 95.

    Google Scholar 

  • O. H. LeBlanc, Jr., J. F. Brown, Jr., J. F. Klebe, L. W. Niedrach, G. M.J. Slusarczuk and W. H. Stoddard, Jr., Polymer membrane sensors for continuous intravascular monitoring of blood pH, J. Appl.Phys. 40, 644 (1976).

    CAS  Google Scholar 

  • O. H. LeBlanc and W. T. Grubb, Long-lived potassium ion selective polymer membrane electrode, Anal. Chem. 48, 1658 (1976).

    CAS  Google Scholar 

  • P. W. Ledger and M. L. Tanzer, Monensin - a perturbant c. cliular physiology, TIBS 9, 313 (1984)

    CAS  Google Scholar 

  • C.O. Lee and W. McD. Armstrong, State and distribution of potassium and sodium ions in frog skeletal muscle, J. Membr. Biol. 15, 331 (1974).

    Article  CAS  Google Scholar 

  • C.O. Lee, A. Taylor and E. Windhager, Cytosolic calcium ion activity in epithelial cells of Necturus kidney, Nature 287, 859 (1980 a).

    Article  Google Scholar 

  • C.O. Lee, D. Y. Uhm and K. Dresdner, Sodium-calcium exchange in rabbit heart muscle cells: direct measurement of sarcoplasmic Ca+ activity, Science 209, 699 (1980b).

    Article  PubMed  CAS  Google Scholar 

  • C.O. Lee, Ionic activities in cardiac muscle cells and application of ion-selective microelectrodes, Am. J. Physiol. 241, H459 (1981).

    PubMed  CAS  Google Scholar 

  • C.O. Lee and D. Y. Uhm, Characteristics of Ca-+-selective microelectrodes and their application to cardiac muscle cells, 1981, in Sykovâ et al.81, p.317.

    Google Scholar 

  • C. O. Lee and M. Dagostino, Effect of strophanthidin on intracellular Na ion activity and twitch tension of constantly driven canine cardiac Purkinje fibres, Biophys.J. 40, 185 (1982).

    Article  PubMed  CAS  Google Scholar 

  • H. C. Lee, J. G. Forte and D. Epel, The use of fluorescent amines for the measurement of pH; appli-cations in liposomes, gastric microsomes, and sea urchin gametes, 1982, in Nuccitelli and Deamer 82, p. 135.

    Google Scholar 

  • J.-J. Leguay and J. Guern, Quantitative effects of 2,4-dichlorophenoxyacetic acid on growth of suspension-cultured Acer pseudoplatanus cells, Plant Physiol. 56, 356 (1975).

    Article  PubMed  CAS  Google Scholar 

  • A. Lehmenkühler, W. Zidek, M. Staschen and H. Caspers, Cortical pH and pCa in relation to DC potential shifts during spreading depression and asphyxiation, 1981, in Sykovâ et al.81, p.225.

    Google Scholar 

  • A. Lehmenkühler, Transient alkaline shift in cortical tissue pH during the onset of spreading depression and of anoxic negative DC-potential shift, Pflügers Arch. Suppl. to 394, R49 (1982).

    Google Scholar 

  • A. Lehmenkühler, M. Staschen and H. Caspers, Depth profile of extracellular pH in the brain cortex during seizure activity, Pflügers Arch. Suppl. to 394, R50 (1982).

    Google Scholar 

  • A. Lehmkühler, H. Caspers and U. Kersting, Relations between DC potentials, extracellular ion activities, and extracellular volume fraction in the cerebral cortex with changes in pCO2, 1985, in Kessler et al. 85, p. 199.

    Google Scholar 

  • J.-M. Lehn, J. P. Sauvage and B. Dietrich, Cryptates. Cation exchange rates, J. Am. Chem. Soc. 92, 2916 (1970).

    Article  CAS  Google Scholar 

  • J.-M. Lehn, Design of organic complexing agents. Strategies towards properties, Structure and Bonding 16, 1 (1973).

    Article  CAS  Google Scholar 

  • J. M. Lehn, Cryptates: The chemistry of macropolycyclic inclusion complexes, Accounts Chem. Res. 11, 49 (1978).

    Article  CAS  Google Scholar 

  • A.A. Lev and W. McD. Armstrong, Ionic activities in cells, Curr. Topics Membr. Transp. 6, 59 (1975).

    Article  CAS  Google Scholar 

  • S. Levy, Intracellular free Ca concentration is not a direct indicator of the receptor sensitivity in Limulus ventral eye, Biophys. J. 37, 85a (1982).

    Article  Google Scholar 

  • S. Levy, D. Tillotson and A. L. F. Gorman, Intracellular Ca-+ gradient associated with Cat+ channel activation measured in a nerve cell body, Biophys. J. 37, 182a (1982).

    Google Scholar 

  • S. Levy and A. Fein, Relationship between light sensitivity and intracellular free Ca concentration in Limuhsventral photoreceptors, J. Gen. Physiol. 85, 805 (1985).

    Article  PubMed  CAS  Google Scholar 

  • L. M. Lewis, T. W. Flechtner, J. Kerkay, K. H. Pearson and S. Nakamoto, Bis(2-ethylhexyl)phthalateconcentrations in the serum of hemodialysis patients, Clin. Chem. 24, 741 (1978).

    CAS  Google Scholar 

  • S. A. Lewis, N. K. Wills and D.C. Eaton, Basolateral membrane potential of a tight epithelium: ion-ic diffusion and electrogenic pumps, J. Membr. Biol. 41, 117 (l 978).

    Google Scholar 

  • S. A. Lewis and N. K. Wills, Resistive artifacts in liquid-ion exchanger -electrode estiates of Na+ activity in epithelial cells, Biophys. J. 31, 127 (1980).

    CAS  Google Scholar 

  • S.A. Lewis and N. K. Wills, Applications and interpretations of ion-,,peci:ic miemee-. dr in tight epithelia, 1981, in Zeuthen 81 a, p.3.

    Google Scholar 

  • B. Libet, Subjective and neuronal time factors in conscious sensory experience, studied in man, and their implications for the mind-brain relationship, in The Search for Absolute Values in a Changing World, Vol. II, The International Cultural Foundation Press, New York, 1978 a, p.971.

    Google Scholar 

  • B. Libet. Neuronal vs. subjective timing for a conscious sensory experience, 1978b, in Buser and Rul Buser 78, p. 69.

    Google Scholar 

  • B. Lilyrann, Impalement artifacts in microelectrode recordings of epithelial membrane potentials, Biophys.J. 15, 1161 (1975).

    Article  Google Scholar 

  • E. Lindner, K. Tóth and E. Pungor, Response time curves of ion-selective electrodes, Anal. Chem 48, 1071 (1976).

    CAS  Google Scholar 

  • E. Lindner, K. Tóth, E. Pungor, W. E. Morf and W. Simon, Response time studies on neutral carrier ion-selective membrane electrodes, Anal. Chem. 50, 1627 (1978).

    CAS  Google Scholar 

  • E. Lindner, K. Tóth, E. Pungor, F. Behm, P. Oggenfuss, D. H. Welti, D. Ammann, W. E. Morf, E. Pretsch and W. Simon, Lead-selective neutral carrier based liquid membrane electrode, Anal. Chem. 56, 1127 (1984).

    CAS  Google Scholar 

  • E. Lindner, K. Tóth and E. Pungor, Problems related to the definition of response time, Pure Appl. Chem., 1985, in press.

    Google Scholar 

  • G. Ling and R. W. Gerard, The normal membrane potential of frog sartorius fiber, J. Cell. Comp. Physiol. 34, 383 (1949).

    Article  CAS  Google Scholar 

  • G. N. Ling, A Physical Theory of the Living State: the Association-Induction Hypothesis, Blaisdell Publishing Company, New York, London, 1962.

    Google Scholar 

  • G. N. Ling and F. W. Cope, Potassium ion: is the bulk of intracellular K+ adsorbed?, Science 163, 1335 (1969).

    Article  PubMed  CAS  Google Scholar 

  • G. N. Ling, Measurements of potassium ion activity in the cytoplasm of living cells, Nature 221, 386 (1969).

    Article  PubMed  CAS  Google Scholar 

  • G. N. Ling, C. Miller and M. M. Ochsenfeld, The physical state of solutes and water in living cells according to the association-induction hypothesis, 1973, in Hazlewood 73, p. 6.

    Google Scholar 

  • G. N. Ling and M. M. Ochsenfeld, Mobility of potassium ion in frog muscle cells, both living and dead, Science 181, 78 (1973).

    Article  PubMed  CAS  Google Scholar 

  • G. N. Ling, The cellular resting and action potentials: interpretation based on the association-induction hypothesis, Physiol. Chem. Phys. 14, 47 (1982).

    CAS  Google Scholar 

  • C. Liu, M. Chin, B. L. T. Prosser, N. J. Palleroni, J. W. Westley and P. A. Miller, X-14885 A, a novel divalent cation ionophore produced by a streptomyces culture: discovery, fermentation, biological as well as ionophore properties and taxonomy of the producing culture, J. Antibiotics 36, 1118 (1983).

    Article  CAS  Google Scholar 

  • W. R. Loewenstein and Y. Kanno, The electrical conductance and potential across the membrane of some cell nuclei, J. Cell. Biol. 16, 421 (1963).

    Article  PubMed  CAS  Google Scholar 

  • J. R. Lopez, L. Alamo, C. Caputo, J. Vergara and R. DiPolo, Determination of ionized Mg concentration in skeletal muscle fibers with magnesium selective microelectrodes, Biophys.J. 41, 179a (1983a).

    Google Scholar 

  • J. R. Lopez, L. Alamo, C. Caputo, R. DiPolo and J. Vergara, Determination of ionic calcium in frog skeletal muscle fibres, Biophys.J. 43, 1 (1983b).

    Article  PubMed  CAS  Google Scholar 

  • J. R. Lopez, L. Alamo and C. Caputo, Constant level of intracellular free magnesium concentration during muscular activity and fatigue, Biophys. J. 45, 232a (1984a).

    Google Scholar 

  • J. R. Lopez, L. Alamo, C. Caputo, J. Vergara and R. DiPolo, Direct measurement of intracellular free magnesium in frog skeletal muscle using magnesium-selective microelectrodes, Biochim. Biophys. Acta 804, 1 (1984b).

    Article  CAS  Google Scholar 

  • J. Louvel and U. Heinemann, Diminution de la concentration extracellulaire des ions calcium lors des crises épileptiques focales induites par l’oenanthotoxine dans le cortex du Chat, C. R. Acad. Sc. Paris, 291, 997 (1980).

    CAS  Google Scholar 

  • C. R. Lowe, Biosensors, Trends in Biotechnology 2, 59 (1984).

    Article  CAS  Google Scholar 

  • D. W. Lubbers, H. Acker, R. P. Buck, G. Eisenman, M. Kessler and W. Simon, eds., Progress in Enzyme and Ion-Selective Electrodes, Springer Verlag, Berlin, Heidelberg, New York, 1981.

    Google Scholar 

  • A. Lundin and M. Baltscheffsky, Measurement of photophosphorylation and ATPase using purified firefly luciferase, Meth. Enzymol. 57, 50 (1978).

    CAS  Google Scholar 

  • W. K. Lutz, H.-K. Wipf and W. Simon, Alkalikationen-Spezifität und Träger-Eigenschaften der Antibiotica Nigericin und Monensin, Hely. Chim. Acta 53, 1741 (1970).

    Article  CAS  Google Scholar 

  • H. D. Lux and E. Neher, The equilibration time course of [K+]o in cat cortex, Exp. Brain Res. 17, 190 (1973).

    Article  PubMed  CAS  Google Scholar 

  • H. D. Lux, Fast recording ion specific microelectrodes: their use in pharmacological studies in the CNS, Neuropharmacology 13, 509 (1974).

    Article  PubMed  CAS  Google Scholar 

  • H. D. Lux and G. Hofmeier, Kinetics of the calcium dependent potassium current in Helix neurons, Pflüger Arch. Suppl. to 373, R47 (1978).

    Google Scholar 

  • H. D. Lux and C. B. Heyer, A new electrogenic calcium-potassium system, The Neurosciences, F.O. Schmitt and F.G. Worden, eds., 4`h Study Programme, MIT Press, Cambridge, MA, 1979, p. 601.

    Google Scholar 

  • H. D. Lux and G. Hofmeier, Effects of calcium currents and intracellular free calcium in Helix neurones, 1979, in Ashley and Campbell 79, p. 409.

    Google Scholar 

  • H. D. Lux, G. Hofmeier and J. B. Aldenhoff, Intracellular free calcium affects electric membrane properties. A study with calcium-selective microelectrodes and with arsenazolll in Helix neurons, 1981, in Sykovâ et al. 81, p. 99.

    Google Scholar 

  • M. Maj-Zurawska, D. Erne, D. Ammann and W. Simon, Lipophilic synthetic monoamides of dicar- boxylic acids as ionophores for alkaline earth metal cations, Hely. Chim. Acta 65, 55 (1982).

    Article  CAS  Google Scholar 

  • B. L. Maloff, S. P. Scordilis and H. Tedeschi, Membrane potential of mitochondria measured with microelectrodes, Science 195, 898 (1977).

    Article  PubMed  CAS  Google Scholar 

  • E. Marban, T.J. Rink, R. W. Tsien and R. Y. Tsien, Free calcium in heart muscle at rest and duringcontraction measured with Ca-+-sensitive microelectrodes, Nature 286, 845 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Y. Marcus, Introduction to Liquid State Chemistry, John Wiley and Sons, London, New York, Sid-ney, Toronto, 1977.

    Google Scholar 

  • R. Margalit and G. Eisenman, Ionic permeation of lipid bilayer membranes mediated by a neutral, noncyclic Lit-selective carrier having imide and ether ligands. I. Selectivity among monovalent cations, J. Membr. Biol. 61, 209 (1981).

    Article  CAS  Google Scholar 

  • P. L. Markovic and J.O. Osburn, Dynamic response of some ion-selective electrodes, Am. Inst. Chem. Eng.J. 19, 504 (1973).

    Article  CAS  Google Scholar 

  • W. S. Marshall and S. D. Klyce, Cell finder speeds impalaments with microelectrodes, Pflügers Arch. 391, 258 (1981).

    Article  PubMed  CAS  Google Scholar 

  • J.-B. Martin, R. Bligny, F. Rebeille, R. Douce, J.-J. Leguay, Y. Mathieu and J. Guem, A31P nuclear

    Google Scholar 

  • magnetic resonance study of intracellular pH of plant cells cultivated in liquid medium, Plant. Physiol. 70, 1156 (1982).

    Article  Google Scholar 

  • T. Maruizumi, H. Miyagi, Y. Takata and T. Kobayashi, Characterization of Na ion-sensitive solvent polymeric membranes based on a neutral carrier, J. Appl. Polym. Sci. 30, 487 (1985).

    Article  CAS  Google Scholar 

  • F. Math and J. L. Davrainville, Postnatal variations of extracellular free calcium levels in the rat. In-fluence of undemutrition, Experientia 35, 1355 (1979).

    Article  PubMed  CAS  Google Scholar 

  • F. Math and J. L. Davrainville, Electrophysiological study on the postnatal development of mitral cell activity in the rat olfactory bulb, Brain Res. 190, 243 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Ph. Matile, Enzyme der Vakuolen aus Wurzelzellen von Maiskeimlingen. Ein Beitrag zur funktionellen Bedeutung der Vakuole bei der intrazellulären Verdauung, Z. Naturforsch. 21b, 871 (1966).

    CAS  Google Scholar 

  • Y. Matsumura, S. Aoki, K. Kajino and M. Fujimoto, The double-barreled microelectrode for the measurement of intracellular pH, using liquid ion-exchanger, and its biological application, in Advances Physiol.Sci, Vol. 11, L.Takacs, ed., Pergamon Press, Akadémiai Kiadó, 1980a, p. 387.

    Google Scholar 

  • Y. Matsumura, K. Kajino and M. Fujimoto, Measurement of intracellular pH of bullfrog skeletal muscle and renal tubular cells with double-barreled antimony microelectrodes, Membr. Biochem. 3, 99 (1980b).

    CAS  Google Scholar 

  • F. P. McGlone, I. J. Russell and O. Sand, Measurement of calcium ion concentrations in the lateral line cupulae of Xenopus laevis, J. Exp. Biol. 83, 123 (1979).

    PubMed  CAS  Google Scholar 

  • F. C. McLean and A. B. Hastings, A biological method for the estimation of calcium ion concentration, J.Biol.Chem. 107, 337 (1934).

    CAS  Google Scholar 

  • P.C. Meier, D. Ammann, H. F. Osswald and W. Simon, Ion-selective electrodes in clinical chemistry, Med. Progr.Technol. 5, 1 (1977).

    CAS  Google Scholar 

  • P.C. Meier, D. Ammann, W. E. Morf and W. Simon, Liquid-membrane ion-selective electrodes and their biomedical applications, in Medical and Biomedical Applications of Electrochemical Devices, 1980, in Koryta 80, p. 13.

    Google Scholar 

  • P. C. Meier, Two-parameter Debye-Hückel approximation for the evaluation of mean activity coefficients of 109 electrolytes, Anal. Chim. Acta 136, 363 (1982).

    Article  CAS  Google Scholar 

  • P.C. Meier, F. Lanter, D. Ammann, R. A. Steiner and W. Simon, Applicability of available ion-selective liquid-membrane microelectrodes to intracellular ion-activity measurements, Pflügers Arch. 393, 23 (1982).

    Article  PubMed  CAS  Google Scholar 

  • P. C. Meier, W. E. Morf, M. Läubli and W. Simon, Evaluation of the optimum composition of neutral-carrier membrane electrodes with incorporated cation-exchanger sites, Anal. Chim. Acta 156, 1 (1984).

    Article  CAS  Google Scholar 

  • E. Metzger, D. Ammann, U. Schefer, E. Pretsch and W. Simon, Lipophilic neutral carriers for lithium selective liquid membrane electrodes, Chimia 38, 440 (1984).

    CAS  Google Scholar 

  • A. P. Minton and J. Wilf, Effect of macromolecular crowding upon the structure and function of an enzyme: glyceraldehyde-3-phosphate dehydrogenase, Biochem. 20, 4821 (1981).

    Article  CAS  Google Scholar 

  • M.S. Mohan and R. G. Bates, Calibration of ion-selective electrodes for use in biological fluids, Clin. Chem. 21, 864 (1975).

    CAS  Google Scholar 

  • G.J. Moody, R. B. Oke and J. D. R. Thomas, A calcium-sensitive electrode based on a liquid ion exchanger in a poly(vinyl chloride) matrix, Analyst 95, 910 (1970).

    Article  CAS  Google Scholar 

  • G.J. Moody and J. D. R. Thomas, Selective Ion-Sensitive Electrodes, Merrow, Watford, Hertfordshire, 1971.

    Google Scholar 

  • C. Moore and B.C. Pressman, Mechanism of action of valinomycin on mitochondria, Biochim. Biophys. Res. Commun. 15, 562 (1964).

    Article  CAS  Google Scholar 

  • M. Moreau, J. P. Vilain and P. Guerrier, Free calcium changes associated with hormone action in amphibian oocytes, Develop. Biol. 78, 201 (1980).

    CAS  Google Scholar 

  • W. E. Morf and W. Simon, Berechnung von freien Hydratationsenthalpien und Koordinationszahlen für Kationen aus leicht zugänglichen Parametern, Helv. Chim. Acta 54, 794 (1971a).

    Article  CAS  Google Scholar 

  • W. E. Morf and W. Simon, Abschätzung der Alkali-und Erdalkali-Ionenselektivität von elektrisch neutralen Träger-Antibiotica (“Carrier-Antibiotica”) und Modellverbindungen, Helv. Chim. Acta 54, 2683 (1971b).

    Article  CAS  Google Scholar 

  • W. E. Morf, D. Ammann, E. Pretsch and W. Simon, Carrier antibiotics and model compounds as components of selective ion-sensitive electrodes, Pure Appl. Chem. 36, 421 (1973).

    CAS  Google Scholar 

  • W. E. Morf, D. Ammann and W. Simon, Elimination of the anion interference in neutral carrier cat-ion-selective membrane electrodes, Chimia 28, 65 (1974a).

    CAS  Google Scholar 

  • W. E. Morf, G. Kahr and W. Simon, Reduction of the anion interference in neutral carrier liquid-membrane electrodes responsive to cations, Anal. Lett. 7 (1), 9 (1974b).

    CAS  Google Scholar 

  • W. E. Morf, E. Lindner and W. Simon, Theoretical treatment of the dynamic response of ion-selective membrane electrodes, Anal. Chem. 47, 1596 (1975).

    CAS  Google Scholar 

  • W. E. Morf, Calculation of liquid-junction potentials and membrane potentials on the basis of the Planck theory, Anal. Chem. 49, 810 (1977).

    CAS  Google Scholar 

  • W. E. Morf and W. Simon, Ion-selective electrodes based on neutral carriers, in Ion-selective Electrodes in Analytical Chemistry, H. Freiser, ed., Plenum Press, New York, London, Washington, Boston, 1978.

    Google Scholar 

  • W. E. Morf, D. Ammann, R. Bissig, E. Pretsch and W. Simon, Cation selectivity of neutral macrocyclic and nonmacrocyclic complexing agents in membranes, in Progress in Macrocyclic Chemistry, R. M. Izatt and J.J. Christensen, eds., Vol.1, John Wiley and Sons, New York, Chichester, Brisbane, Toronto, 1979, p. 1.

    Google Scholar 

  • W. E. Morf, the Principles of Ion-Selective Electrodes and of Membrane Transport, Akadémiai 1Gadó, Budapest, 1981/ Elsevier, Amsterdam, New York, 1981.

    Google Scholar 

  • J.G. Morin, Coelenterate bioluminescence, in Coelenterate Biology: Reviews and New Perspec-tives, L. Muscatine and H. M. Lenhoff, eds., Academic Press, New York, 1974, p. 397.

    Google Scholar 

  • M. E. Morris, Measurements of ion activity in the CNS: extracellular K+ and Ca’ in the hippo-campus, 1981, in Sykovd et al.81, p.241.

    Google Scholar 

  • M. E. Morris and K. Krnjevié, Slow diffusion of Ca’ in the rat’s hippocampus, Can. J. Physiol. Pharmacol. 59, 1022 (1981).

    Article  PubMed  CAS  Google Scholar 

  • M. E. Morris, K. Krnjevie and N. Ropert, Changes in free Ca’-+ recorded inside hippocampal pyra-midal neurons in response to fimbrial stimulation, Soc. Neurosci. Abs. 9, 395 (1983).

    Google Scholar 

  • H. Moser, Intracellular pH regulation in the sensory neurone of stretch receptor of the crayfish (As-tacusjluviatilis), J. Physiol. 362, 23 (1985).

    PubMed  CAS  Google Scholar 

  • V. B. Mountcastle, Some neural mechanisms for directed attention, 1978, in Buser and RougeulBuser 78, p. 37.

    Google Scholar 

  • M. Muhammed, The formation of trilaurylammonium carbonate, Acta Chem. Scand. 26, 412 (1972).

    Article  CAS  Google Scholar 

  • M. H. Muheim, Fabrication of well defined micropipette tips by hydrofluoric acid etching, Pflügers Arch. 372, 101 (1977).

    Article  PubMed  CAS  Google Scholar 

  • J.-L. Munoz, F. Deyhimi and J. A. Coles, Silanization of glass in the making of ion-sensitive micro-electrodes, J. Neurosci. Methods 8, 231 (1983).

    Article  PubMed  CAS  Google Scholar 

  • E. Murphy, K. Coll, T. L. Rich and J. R. Williamson, Hormonal effects on calcium homeostasis in isolated hepatocytes, J. Biol. Chem. 255, 6600 (1980).

    PubMed  CAS  Google Scholar 

  • W. A. C. Mutch and A. J. Hansen, Extracellular pH changes during spreading depression and cere-bral ischemia: mechanisms of brain pH regulation, J.Cerebr. Blood Flow Metabol. 4, 17 (1984)

    Article  CAS  Google Scholar 

  • W.A.C. Mutch and A.J. Hansen, Brain extracellular pH changes during alterations in substrate supply, 1985, in Kessler et aí. 85, p. 189.

    Google Scholar 

  • G. Navon, S.Ogawa, R. G. S.ulman and T. Yamane, High-resolution 31P nuclear magnetic reso-nance studies of metabolism in aerobic Escherichia coli cells, Proc. Natl. Acad. Sci. 74, 888 (1977).

    Article  PubMed  CAS  Google Scholar 

  • W. L. Nastuk and A. L. Hodgkin, The electrical activity of single muscle fibers, J.Cell.Comp. Physiol. 35, 39 (1950).

    CAS  Google Scholar 

  • E. Neher, Elektronische Meßtechnik in der Physiologie, Springer Verlag, Berlin, Heidelberg, New York, 1974.

    Google Scholar 

  • D. J. Nelson, J. Ehrenfeld and B. Lindemann, Volume changes and potential artifacts of epithelial cells of frog skin following impalement with microelectrodes filled with 3 M KCI, J. Membr. Biol., Special Issue 40, 91 (1978).

    Article  CAS  Google Scholar 

  • C. Nicholson, R. Steinberg, H. Stöckle and G. tenBruggencate, Calcium decrease associated with aminopyridine-induced potassium increase in cat cerebellum, Neurosci. Letters 3, 315 (1976).

    CAS  Google Scholar 

  • C. Nicholson, G. tenBruggencate, R. Steinberg and H. Stöckle, Calcium modulation in brain extrac-ellular microenvironment demonstrated with ion-selective micropipette, Proc. Natl. Acad. Sci. 74, 1287 (1977).

    Article  PubMed  CAS  Google Scholar 

  • C. Nicholson, R. P. Kraig, G. tenBruggencate, H. Stöckle and R. Steinberg, Potassium, calcium, chloride and sodium changes in extracellular space during spreading depression in cerebellum, Arzneim.-Forsch./Drug Res. 28, 874 (1978a).

    CAS  Google Scholar 

  • C. Nicholson, G. tenBruggencate, H. Stöckle and R. Steinberg, Calcium and potassium changes in extracellular microenvironment of cat cerebellar cortex, J. Neurophysiol. 41, 1026 (1978b).

    PubMed  CAS  Google Scholar 

  • C. Nicholson, Brain cell microenvironment as a communication channel, in The Neurosciences, F. O. Schmitt and F. G. Worden, eds., MIT Press, Cambridge Mass., 1979.

    Google Scholar 

  • C. Nicholson and J. M. Phillips, Diffusion of anions and cations in the extracellular microenvironment of the brain, J. Physiol. 296, 66P (1979).

    PubMed  CAS  Google Scholar 

  • C. Nicholson, J. M. Phillips and A. R. Gardner-Medwin, Diffusion from an iontophoretic point source in the brain: role of tortuosity and volume fraction, Brain Res. 169, 580 (1979).

    Article  PubMed  CAS  Google Scholar 

  • C. Nicholson, Measurement of extracellular ions in the brain, Trends in Neurosciences 3, 216 (1980a).

    Article  CAS  Google Scholar 

  • C. Nicholson, Modulation of extracellular calcium and its functional implications, Fed. Proc. 39, 1519 (1980b).

    CAS  Google Scholar 

  • C. Nicholson and R. P. Kraig, The behavior of extracellular ions during spreading depression, 1981, in Zeuthen 81 a, p.217.

    Google Scholar 

  • C. Nicholson, J. M. Phillips, C. Tobias and R. P. Kraig, Extracellular potassium, calcium and volume profiles during spreading depression, 1981, in Sykovâ et al.81, p.211.

    Google Scholar 

  • C. Nicholson, R. P. Kraig, C. R. Ferreira-Filho and P. Thompson, Hydrogen ion variations and their interpretation in the microenvironment of the vertebrate brain, 1985, in Kessler et al. 85, p. 229.

    Google Scholar 

  • B. P. Nicolsky, Theory of the glass electrode, Zh. Fis. Khim. 10, 495 (1937a).

    Google Scholar 

  • B. P. Nicolsky, Theory of the glass electrode I., Acta physicochimica U. R. S. S. 7, 597 (1937).

    Google Scholar 

  • J. R. Nilsson and J. R. Coleman, Calcium-rich, refractile granules in Tetrahymena pyriformis and their possible role in the intracellular ion-regulation, J. Cell. Sci. 24, 311 (1977).

    PubMed  CAS  Google Scholar 

  • R. Nuccitelli and D. W. Deamer, eds., Intracellular pH: Its Measurement, Regulation and Utiliza-tion in Cellular Functions, Kroc Foundation Series, Voi. 15, A. R. Liss, Inc., New York, 1982

    Google Scholar 

  • H. Oberleithner, T. Kubota and G. Giebisch, Potassium (K+) transport and intracellular K+ activity in distal tubules of Amphiuma, Fed. Proc. 39, 4266 (1980).

    Google Scholar 

  • H. Oberleithner, F. Lang, G. Giebisch and P. Deetjen, The effect of furosemide (F) on intracellular Na+-activity (Nat) in early distal tubule of Amphiuma, Pflügers Arch. Suppl. to 39, 66 (1981).

    Google Scholar 

  • H. Oberleithner, F. Lang, W. Wang and G. Giebisch, Effects of inhibition of chloride transport on intracellular sodium activity in distal amphibian nephron, Pflügers Arch. 394, 55 (1982a).

    Google Scholar 

  • H. Oberleithner, G. Giebisch, F. Lang and W. Wang, Cellular mechanism of the furosemide sensitive transport system in the kidney, Klin. Wochenschr. 60, 1173 (1982b).

    Article  CAS  Google Scholar 

  • H. Oberleithner, F. Lang and W. Wenhui, Potassium dependence of the sodium chloride cotran- sport mechanism in the distal amphibian nephron, Pflügers Arch. Suppl. to 392, R14 (1982c).

    Google Scholar 

  • H. Oberleithner, F. Lang, R. Greger, W. Wang and G. Giebisch, Effect of luminal potassium on cellular sodium activity in the early distal tubule of Amphiuma kidney, Pflügers Arch. 396, 34 (1983 a).

    Google Scholar 

  • H. Oberleithner, F. Lang, W. Wang, G. Messner and P. Deetjen, Evidence for an amiloride sensitive Na+ pathway in the amphibian diluting segment induced by K+ adaptation, Pflügers Arch. 399, 166 (1983b).

    Article  PubMed  CAS  Google Scholar 

  • H. Oberleithner, F. Lang, G. Messner and W. Wang, Mechanism of hydrogen ion transport in the diluting segment of frog kidney, Pflügers Arch. 402, 272 (1984a).

    Article  PubMed  CAS  Google Scholar 

  • H. Oberleithner, F. Lang, G. Messner and W. Wang, Evidence for Na+-dependent H+ secretion in frog diluting segment, Pflügers Arch. Suppl. to 400, R20 (1984b).

    Google Scholar 

  • J. O’Doherty, J. F. Garcia-Diaz and W. McD. Armstrong, Sodium-selective liquid ion-exchanger microelectrodes for intracellular measurements, Science 203, 1349 (1979).

    Article  PubMed  Google Scholar 

  • J. O’Doherty, S.J. Youmans and W. McD. Armstrong, Calcium regulation during stimulus-secretion coupling: continuous measurement of intracellular calcium activities, Science 209, 510 (1980).

    Article  PubMed  Google Scholar 

  • J. O’Doherty and R. Stark, Transmembrane and transepithelial movement of calcium during stimulus-secretion coupling, Am. J. Physiol. 241, G150 (1981a).

    Google Scholar 

  • J. O’Doherty and R. J. Stark, Measurement of intracellular calcium activities, 1981 b, in Sykovâ et al.81, p.91.

    Google Scholar 

  • J. O’Doherty and R.J. Stark, Stimulation of pancreatic acinar secretion: increases in cytosolic calcium and sodium, Am. J. Physiol. 242, G513 (1982).

    PubMed  Google Scholar 

  • M. Oehme, M. Kessler and W. Simon, Neutral carrier Ca-+-microelectrode, Chimia 30, 204 (1976).

    CAS  Google Scholar 

  • M. Oehme and W. Simon, Microelectrode for potassium ions based on a neutral carrier and com-parison of its characteristics with a cation exchanger sensor, Anal. Chim. Acta 86, 21, (1976).

    Article  CAS  Google Scholar 

  • M. Oehme, Beitrag zur Entwicklung ionenselektiver Mini-und Mikroelektroden und zu deren Meßtechnik, Thesis, ETH Zürich, Nr. 5953, Juris Druck + Verlag, Zürich, 1977.

    Google Scholar 

  • U. Oesch and W. Simon, Kinetische Betrachtung der Verteilung von elektrisch neutralen Ionophor-en zwischen einer Flüssigmembran und einer wässerigen Phase, HeIv. Chim. Acta 62, 754 (1979)

    Article  CAS  Google Scholar 

  • U. Oesch, D. Ammann, E. Pretsch and W. Simon, Ionophore extrem hoher Lipophilie als selektive Komponenten für Flüssigmembranelektroden, Hely. Chim. Acta 62, 2073 (1979).

    Article  CAS  Google Scholar 

  • U. Oesch and W. Simon, Life time of neutral carrier based ion-selective liquid-membrane electrodes, Anal. Chem. 52, 692 (1980).

    CAS  Google Scholar 

  • U. Oesch, S.Caras and J.Janata, Field effect transistors sensitive to sodium and ammonium ions, Anal. Chem. 53, 1983 (1981).

    Google Scholar 

  • U. Oesch, O. Dinten, D. Ammann and W. Simon, Life time of neutral carrier based membranes in aqueous systems and blood serum, 1985 a, Kessler et al. 85, p. 42.

    Google Scholar 

  • U. Oesch, O. Dinten and W. Simon, 1985b, in preparation.

    Google Scholar 

  • U. Oesch, P. Anker, D. Ammann and W. Simon, Membrane technological optimization of ion-selective electrodes based on solvent polymeric membranes for clinical applications, 1985 c, in Ion-Selective Electrodes, E. Pungor and I. Buzds, eds., 1985, p. 81.

    Google Scholar 

  • U. Oesch and W. Simon, 1985, in preparation.

    Google Scholar 

  • Y. Ogawa, H. Harafugi and N. Kurebayashi, Comparison of the characteristics of four metallochromic dyes as potential calcium indicators for biological experiments, J. Biochem. 87, 1293 (1980).

    PubMed  CAS  Google Scholar 

  • T. E. Ogden, M. C. Citron and R. Pierantoni, The jet stream microbeveler: an inexpensive way to bevel ultrafine glass micropipettes, Science, 201, 469 (1978).

    Article  PubMed  CAS  Google Scholar 

  • S. Ohkuma and B. Poole, Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents, Proc. Natl. Acad. Sci. USA 75, 3327 (1978).

    Article  Google Scholar 

  • S.T. Ohnishi and S. Ebashi, Spectrophotometrical measurement of instantaneous calcium binding of the relaxing factor of muscle, J. Biochem. 54, 506 (1963).

    PubMed  CAS  Google Scholar 

  • S.T. Ohnishi, Characterization of the murexide method: Dual-wavelength spectrophotometry of cations under physiological conditions, Anal. Biochem. 85, 165 (1978).

    CAS  Google Scholar 

  • Y. Okada and A. Inouye, Tip potential and fixed charges on the glass wall of microelectrode, Experientia 31, 545 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Y. Okada and A. Inouye, Studies on the origin of the tip potential of glass microelectrode, Biophys.Struct.Mechan. 2, 31 (1976).

    Article  CAS  Google Scholar 

  • U. Olsher, The lipophilic macrocyclic polyether 2,3,9,10-dibenzo-1,4,8,11- tetraoxacyclotetradeca2,9-diene (Dibenzo-14-crown-4): a selective ionophore for lithium ions, J. Am.Chem. Soc. 104, 4006 (1982).

    Article  CAS  Google Scholar 

  • F. Oosawa, Polyelectrolytes, Marcel Dekker, Inc., New York, 1971.

    Google Scholar 

  • R. K. Orkand, I. Dietzel and J. A. Coles, Light-induced changes in extracellular volume in the retina of the drone, Apis mellifera, Neurosci. Letters 45, 273 (1984).

    CAS  Google Scholar 

  • F. W. Orme, Liquid ion-exchanger microelectrodes, 1969, in Lavallée et al.69, p.376.

    Google Scholar 

  • H. F. Osswald, R. E. Dohner, T. Meier, P. C. Meier and W. Simon, Flow-through system of high stability for the measurement of ion activities in clinical chemistry, Chimia 31, 50 (1977).

    CAS  Google Scholar 

  • N. Otake and M. Mitani, lonophorous properties of antibiotic-6016, a novel magnesium selective ionophore, Agric. Biol. Chem. 43, 1543 (1979).

    CAS  Google Scholar 

  • Y. A. Ovchinnikov, V. T. Ivanov and A. M. Shkrob, Membrane-Active Complexones, B. B. A. Library, Vol. 12, Elsevier, Amsterdam, 1974.

    Google Scholar 

  • J. D. Owen, H. M. Brown and J. P. Pemberton, Ca’-+ in the Aplysia giant cell and the Balanus eburneus muscle fibre, Biophys. J. 16, 34 a (1976).

    Google Scholar 

  • K. R. Page, L. S. Kelday and D. J. F. Bowling, The diffusion of KCI from micro-electrodes, J. Exp. Bot. 32, 55 (1981).

    Article  CAS  Google Scholar 

  • H. Pallmann, Die Wasserstoffaktivität in Dispersionen und kolloiddispersen Systemen, Kolloidchem. Beihefte 30, 334 (1930).

    Article  Google Scholar 

  • L. G. Palmer and M. M. Civan, Distribution of Na’, K+ and Cl-between nucleus and cytoplasm in Chironomus salivary gland cells, J. Membr. Biol. 33, 41 (1977).

    Article  PubMed  CAS  Google Scholar 

  • L. G. Palmer, T.J. Century and M.M. Civan, Activity coefficients of intracellular Na’ and K+ during development of frog oocytes, J. Membr. Biol. 40, 25 (1978).

    Article  PubMed  CAS  Google Scholar 

  • W. Patnode and D. F. Wilcock, Methylpolysiloxanes, J. Am. Chem. Soc. 68, 358 (1946).

    Article  CAS  Google Scholar 

  • M. Paulmichl, G. Gstraunthaler and F. Lang, Electrical properties of Madin Darby canine kidney (MDCK) cells, Pflügers Arch. Suppl. to 402, R9 (1984).

    Google Scholar 

  • H. Pauly, Über den physikalisch-chemischen Zustand des Wassers und der Elektrolyte in der lebenden Zelle, Biophysik 10, 7 (1973).

    Article  PubMed  CAS  Google Scholar 

  • C.J. Pedersen, Cyclic polyethers and their complexes with metal salts, J. Am. Chem. Soc. 89, 2495 (1967).

    Article  CAS  Google Scholar 

  • W. Penfield, The Mystery of the Mind, Princeton University Press, Princeton, 1975.

    Google Scholar 

  • J. P. Peri and A. L. Hensley, Jr., The surface structure of silica gel, J. Phys. Chem. 72, 2926 (1968).

    Article  CAS  Google Scholar 

  • H. Petsche, I. B. Müller-Paschinger, H. Pockberger, O. Prohaska, P. Rappelsberger and R. Vollmer, Depth profiles of electrocortical activities and cortical architectonics, in Architectonics of the Cerebral Cortex, M. A. B. Brazier and H. Petsche, eds., Raven Press, New York, 1978, p. 257.

    Google Scholar 

  • W. Pfeffer, Osmotische Untersuchungen. Studien zur Zellmechanik, Verlag W. Engelmann, Leip-zig, 1877.

    Google Scholar 

  • H. Pfister and H. Pauly, Chemical potential of KCl and its ion constituents in concentrated protein salt solutions, J. Polymer Sci. Part C 39, 179 (1972).

    Article  Google Scholar 

  • J. M. Phillips and C. Nicholson, Anion permeability in spreading depression investigated with ion-sensitive microelectrodes, Brain Res. 173, 567 (1979).

    Article  PubMed  CAS  Google Scholar 

  • A. Picard and M. Dorée, Hormone-induced parthenogenetic activation of mature starfish oocytes, Exp. Cell. Res. 145, 315 (1983a).

    Article  Google Scholar 

  • A. Picard and M. Dorée, Intracellular microinjection of alkaline buffers reversibly inhibits the initial phase of hormone action in meiosis reinitiation of starfish oocytes, Develop. Biol. 97, 184 (1983b).

    Article  Google Scholar 

  • A. Picard and M. Dorée, Is calcium the second messenger of 1-methyladenine in meiosis reinitiation of starfish oocytes, Exp. Cell. Res. 145, 325 (1983 c).

    Article  PubMed  CAS  Google Scholar 

  • J. Pick, K. Tóth, M. Vasiâk, E. Pungor and W. Simon, Development of a silicone-rubber potassium membrane electrode, Anal. Chim. Acta 64, 477 (1973).

    Article  CAS  Google Scholar 

  • D. Pinkel, Flow cytometry and sorting, Anal. Chem. 54, 503 A (1982).

    Google Scholar 

  • L. A. R. Pioda, V. Stankova and W. Simon, Highly selective potassium ion responsive liquid-membrane electrode, Anal. Lett. 2, 665 (1969).

    CAS  Google Scholar 

  • P. I. Polimeni and E. Page, Magnesium in heart muscle, Circ. Res. 33, 367 (1973).

    CAS  Google Scholar 

  • P. A. Poole-Wilson and S. R. Seabrooke, Relationship betwen intracellular pH and contractility in guinea-pig papillary muscles, J. Physiol. 365, 63 P (1985).

    Google Scholar 

  • K. R. Popper and J. C. Eccles, The Self and Its Brain, Springer International, Berlin, Heidelberg, New York, 1977.

    Google Scholar 

  • K. R. Popper, Objective Knowledge. An Evolutionary Approach, Oxford University Press, Oxford, 1979.

    Google Scholar 

  • T. Pozzan, T.J. Rink and R. Y. Tsien, Intracellular free Ca’’+ in intact lymphocytes, J. Physiol. 318, 12 P (1981).

    Google Scholar 

  • J. M. Pratt, Inorganic Chemistry of Vitamin B12, Academic Press, London, 1972.

    Google Scholar 

  • F. G. Prendergast, The use of photoproteins in the detection and quantitation of Ca’-+ in biological systems, Trends Anal. Chem. 1, 378 (1982).

    CAS  Google Scholar 

  • B.C. Pressman, E. J. Harris, W. S. Jagger and J. H. Johnson, Antibiotic-mediated transport of alkali ions across lipid barriers, Proc. Natl. Acad. Sci. 58, 1949 (1967).

    Article  PubMed  CAS  Google Scholar 

  • E. Pretsch, D. Ammann and W. Simon, Design of ion carriers and their application in ion selective electrodes, Research Development 25, 20 (1974).

    Google Scholar 

  • E. Pretsch, R. Buchi, D. Ammann and W. Simon, Lipophilic complexing agents designed for use in ion-selective liquid membrane electrodes, in Analytical Chemistry, Essays in Memory of Anders Ringbom, E. Wänninen, ed., Pergamon Press, Oxford, New York, 1977, p. 321.

    Google Scholar 

  • E. Pretsch, D. Ammann, H. F. Osswald, M. Güggi and W. Simon, Ionophore vom Typ der 3Oxapentandiamide, Helv. Chim. Acta 63, 191 (1980).

    Article  CAS  Google Scholar 

  • E. Pretsch, J. Bendl, P. Portmann and M. Welti, Application of quantum chemical calculations in the design of ion carriers, in Steric Effects in Biomolecules, G. Naray-Szabo, ed., Akadémiai Kiado, Budapest, 1982, p. 82.

    Google Scholar 

  • E. Pretsch, D. Wegmann, D. Ammann, A. Bezegh, O. Dinten, M. W. Läubli, W. E. Morf, U. Oesch, K. Sugahara, H. Weiss and W. Simon, Effects of lipophilic charged sites on the electromotive behaviour of liquid membrane electrodes, 1985, in Kessler et al. 85, p. 11.

    Google Scholar 

  • K. H. Pribram, The mind/brain issue as a scientific problem, in The Search for Absolute Values in a Changing World, Vol. IL The International Cultural Foundation Press, New York, 1978, p. 979.

    Google Scholar 

  • D. A. Prince, C. Benninger and J. Kadis, Evoked ionic alterations in brain slices, 1981, in Sykovâ et al.81, p.247.

    Google Scholar 

  • O. Prohaska, Dünnschichtelektroden für die Hirnforschung, Elektronikschau 1, 26 (1983).

    Google Scholar 

  • M. Prudhomme and G. Jeminet, Semi-synthesis of A23187 (calcimycin) analogs, Experientia 39, 256 (1983).

    Article  CAS  Google Scholar 

  • L. R. Pucacco and N. W. Carter, A glass-membrane pH microelectrode, Anal. Biochem. 73, 501 (1976).

    CAS  Google Scholar 

  • L. R. Pucacco and N. W. Carter, A submicrometer glass-membrane pH micro-electrode, Anal. Biochem. 89, 151 (1978).

    CAS  Google Scholar 

  • R. Pumain, I. Kurcewicz and J. Louvel, Fast extracellular calcium transients: involvement in epileptic processes, Science 222, 177 (1983).

    Article  PubMed  CAS  Google Scholar 

  • E. Pungor and Y. Umezawa, Response time in electrochemical cells containing ion-selective electrodes, Anal. Chem. 55, 1432 (1983).

    CAS  Google Scholar 

  • R. D. Purves, The physics of iontophoretic pipettes, J. Neurosci. Meth. 1, 165 (1979).

    Article  CAS  Google Scholar 

  • R. D. Purves, Microelectrode Methods for Intracellular Recording and Ionophoresis, Biological Techniques Series, Vol. 6, Academic Press, London, New York, Toronto, Sidney, San Francisco, 1981.

    Google Scholar 

  • G. K. Radda, D. G. Gadian and B. D. Ross, Energy metabolism and cellular pH in normal and pathological conditions. A new look through 31phosphorus nuclear magnetic resonance, Ciba Foundation Symposium 87, 36 (1982).

    PubMed  CAS  Google Scholar 

  • M. D. Reboiras, H. Pfister and H. Pauly, Activity coefficients of salts in highly concentrated protein solutions. I. Alkali chlorides in isoionic bovine serum albumin solutions. Biophys.Chem. 9, 37 (1978).

    Article  PubMed  CAS  Google Scholar 

  • R. Rangarajan and G.A. Rechnitz, Dynamic response of ion-selective membrane electrodes, Anal.Chem. 47, 324 (1975).

    Article  CAS  Google Scholar 

  • S. J. Rehfeld, J. Barkeley and H. F. Loken, Effect of pH and NaC1 on measurements of ionized calcium in matrices of serum and human albumin with a new calcium-selective electrode, Clin. Chem. 30, 304 (1984).

    CAS  Google Scholar 

  • W. Rehwald, J. Geibel, E. Gstrein and H.Oberleithner, A microelectrode for continuous monitoring of glucose concentration in isolated perfused tubule segments, Pflügers Arch. 400, 398 (1984).

    Article  PubMed  CAS  Google Scholar 

  • L. Reuss and S. A. Weinman, Intracellular ionic activities and transmembrane electrochemical potential differences in gallbladder epithelium, J. Membr. Biol. 49, 345 (1979).

    Article  PubMed  CAS  Google Scholar 

  • L. Reuss and L.Costantin, Cl-/HCO3 at the apical membrane of Necturus gallbladder, J. Gen. Physiol. 83, 801 (1984).

    Article  PubMed  CAS  Google Scholar 

  • G.T. Reynolds, Localisation of free ionized calcium in cells by means of image intensification, 1979, in Ashley and Campbell 79, p. 227.

    Google Scholar 

  • R. Rick, M. Horster, A. Dörge and K. Thurau, Determination of electrolytes in small biological fluid samples using energy dispersive X-ray micro-analysis, Pflügers Arch. 369, 95 (1977).

    Article  PubMed  CAS  Google Scholar 

  • E. B. Ridgway and C.C. Ashley, Calcium transients in single muscle fibres, Biochim. Biophys. Res. Commun. 39, 229 (1967).

    Article  Google Scholar 

  • J. Riemer, C.-J. Mayer and G. Ulbrecht, Determination of membrane potential in smooth muscle cells using microelectrodes with reduced tip potential, Pflügers Arch. 349, 267 (1974).

    Article  PubMed  CAS  Google Scholar 

  • T. J. Rink and R. Y. Tsien, Calcium-selective micro-electrodes with bevelled, submicron tips containing poly(vinylchloride)-gelled neutral-ligand sensor, J. Physiol. 308, 5 P (1980).

    Google Scholar 

  • T.J. Rink, R. Y. Tsien and A. E. Warner, Free calcium in Xenopus embryos measured with ion-selec-tive microelectrodes, Nature 283, 658 (1980).

    Article  PubMed  CAS  Google Scholar 

  • T.J. Rink, R. Y. Tsien and T. Pozzan, Cytoplasmic pH and free Mg’+ in lymphocytes, J. Cell. Biol. 95, 189 (1982).

    Article  PubMed  CAS  Google Scholar 

  • W.G. Robertson and R. W. Marshall, Calcium measurements in serum and plasma - total and ionized, CRC Crit. Rev. Clin. Lab. Sci. 11, 271 (1979).

    Article  CAS  Google Scholar 

  • G. R. Robinson and B. I. H. Scott, A new method of estimating micropipette tip diameter, Experientia 29, 1039 (1973).

    Article  PubMed  CAS  Google Scholar 

  • R. A. Robinson and R. M. Stokes, Electrolyte Solutions, Butterworths, London, 1968.

    Google Scholar 

  • A. Roos and W. F. Boron, Intracellular p1I, Physiol. Rev. 61, 296 (1981).

    CAS  Google Scholar 

  • A. Roos and D. W. Keifer, Estimation of intracellular pH from distribution of weak electrolytes, 1982, in Nuccitelli and Deamer 82, p. 55.

    Google Scholar 

  • B. Rose and W. R. Loewenstein, Permeability of cell junction depends on local cytoplasmic calcium activity, Nature 254, 250 (1975a).

    Article  PubMed  CAS  Google Scholar 

  • B. Rose and W. R. Loewenstein, Calcium ion distribution in cytoplasm visualized by aequorin: diffusion in cytosol restricted by energized sequestering, Science 190, 1204 (1975b).

    Article  PubMed  CAS  Google Scholar 

  • H. Rottenberg, T. Grunwald and M. Avron, Determination of pH in chioroplasts. I. Distribution of [14C1 methylamine. Eur. J. Biochem. 25, 54 (1972).

    Article  CAS  Google Scholar 

  • A. Rougeul-Buser, J.-J. Bouyer and P. Buser, Transitional states of awareness and short-term fluctuations of selective attention: neurophysiological correlates and hypotheses, 1978, in Buser and Rougeul-Buser 78, p. 215.

    Google Scholar 

  • A. N. Rowan, Of Mice, Models, and Men, A Critical Evaluation of Animal Research, State University of New York Press, Albany, 1984.

    Google Scholar 

  • H. Ruprecht, P. Oggenfuss, U. Oesch, D. Ammann, W. E. Morf and W. Simon, Ion transport in artificial membranes induced by neutral ionophores, Inorg. Chim. Acta 79, 67 (1983).

    Google Scholar 

  • J. Rüzicka, E. H. Hansen and J. C. Tjell, Selectrode - the universal ion-selective electrode. Part VI. The calcium(II) selectrode employing a new ion exchanger in a nonporous membrane and a solid-state reference system, Anal. Chim. Acta 67, 155 (1973).

    Article  Google Scholar 

  • O. Ryba and J. Petrânek, Interference of permeable anions in potassium-sensitive membrane electrodes based on valinomycin and dimethyl-dibenzo-30-crown-10, J. Electroanal. Chem. 67, 321 (1976).

    Article  CAS  Google Scholar 

  • M. Sankar and R. G. Bates, Buffers for the physiological pH range: Thermodynamic constants of 3-(N-morpholino)propane sulfonic acid from 5to 50°C, Anal. Chem. 50, 1922 (1978).

    CAS  Google Scholar 

  • A. Scarpa, Indicators of free magnesium, Biochemistry 13, 2789 (1974).

    Article  PubMed  CAS  Google Scholar 

  • A. Scarpa, Measurement of calcium ion concentrations with metallochromic indicators, 1979, in Ashley and Campbell 79, p. 85.

    Google Scholar 

  • A. Scarpa and F. J. Brinley, In situ measurements of free cytosolic magnesium ions, Fed. Proc. 40, 2646 (1981).

    PubMed  CAS  Google Scholar 

  • A. Scarpa, Cell ion measurement with metallochromic indicators, Techniques in Cellular Physiology P127, 1 (1982).

    Google Scholar 

  • O. F. Schäfer, The properties of poly(vinylisobutyl ether) as a matrix for ion-selective electrodes, Anal. Chim. Acta 87, 495 (1976).

    Article  Google Scholar 

  • J.G. Schindler, G. Stork, H.-J. Stith and W. Schäl, Siloxanverbindungen als aktive Komponenten in ionenselektiven Elektrodenmembranen, Fresenius Z. Anal. Chem. 290, 45 (1978).

    Article  CAS  Google Scholar 

  • J. G. Schindler and M. M. Schindler, Bioelektrochemische Membranelektroden, Walter de Gruyter, Berlin, New York, 1983.

    Google Scholar 

  • W.R. Schlue and J. W. Deitmer, Evidence for Na+-Ca’+ exchange across the neuronal membrane in the leech CNS, Pflügers Arch. Suppl. to 394, R48 (1982).

    Google Scholar 

  • W. R. Schlue and W. Wuttke, Potassium activity in leech neurophile glial cells changes with external potassium concentration, Brain Res. 270, 368 (1983).

    Article  PubMed  CAS  Google Scholar 

  • W. R. Schlue and R. C. Thomas, A dual mechanism for intracellular pH regulation by leech neurones, J. Physiol. 364, 327 (1985).

    PubMed  CAS  Google Scholar 

  • W. R Schlue, W. Wuttke and J. W. Deitmer, Ion activity measurements in extracellular spaces, nerve and glial cells in the central nervous system of the leech, 1985, in Kessler et al. 85, p. 166.

    Google Scholar 

  • K. Schmid and G. Böhmer, Positionierung von Mikroelektroden: Vorwärts im µm-Bereich, Elektronik 2, 48 (1985).

    Google Scholar 

  • J. K. Schneider, P. Hofstetter, E. Pretsch, D. Ammann and W. Simon, N,N,N’,N’-Tetrabutyl-3,6- dioxaoctan-dithioamid, Ionophor mit Selektivität für Cd’-+, Hely. Chim. Acta 63, 217 (1980).

    Article  CAS  Google Scholar 

  • R. Scholer and W. Simon, Membranelektrode zur selektiven, potentiometrischen Erfassung organischer Kationen, Heiv. Chim. Acta 55, 171 (1972).

    Article  Google Scholar 

  • H. Scholze, Glas. Natur, Struktur und Eigenschaften, 2. Auflage, Springer Verlag, Berlin, Heidelberg, New York, 1977.

    Google Scholar 

  • R. A. Schümperli, H. Oetliker and R. Weingart, Effect of 50% external sodium in solutions of normal and twice normal tonicity on internal sodium activity in frog skeletal muscle, Pflügers Arch. 393, 51 (1982).

    Article  PubMed  Google Scholar 

  • P. Schulthess, Y. Shijo, H. V. Pham, E. Pretsch, D. Ammann and W. Simon, A hydrogen ion-selective liquid-membrane electrode based on tri-n-dodecylamine as neutral carrier, Anal. Chim. Acta 131, 111 (1981).

    Article  CAS  Google Scholar 

  • P. Schulthess, D. Ammann, W. Simon, C. Caderas, R. Stepanek and B. Kräutler, A lipophilic derivative of vitamin B12 as a selective carrier for anions, HeIv. Chim. Acta 67, 1026 (1984).

    Article  CAS  Google Scholar 

  • P. Schulthess, D. Ammann, B. Kräutler, C. Caderas, R. Stepanek and W. Simon, Nitrite selective liquid membrane electrode, Anal. Chem. 57, 1397 (1985).

    CAS  Google Scholar 

  • P. Schuster, W. Jakubetz and W. Marius, Molecular models for the solvation of small ions and polar molecules, Topics in Current Chemistry, 60, 1 (1975).

    Article  PubMed  CAS  Google Scholar 

  • G. Schwarzenbach, Der Chelateffekt, Hely. Chim. Acta 35, 2433 (1952).

    Google Scholar 

  • R. Scordamaglia, F.Cavallone and E.Clementi, Analytical potentials from “ab initio” computations for the interaction between biomolecules. 2. Water with the four bases of DNA, J. Am. Chem. Soc. 99, 5545 (1977).

    Article  PubMed  CAS  Google Scholar 

  • J. A. Sechzer, ed., The role of animals in biomedical research, Ann. New York Acad. Sci., Vol. 406, 1983.

    Google Scholar 

  • J. Senkyr, D. Ammann, P.C. Meier, W. E. Mort*, E. Pretsch and W. Simon, Uranyl ion selective electrode based on a new synthetic neutral carrier, Anal. Chem. 51, 786 (1979).

    CAS  Google Scholar 

  • H. Seto, A. Jyo and N. Ishibashi, Anomalous response of liquid membrane electrode based on neutral carrier, Chem. Lett. 1975, 483.

    Google Scholar 

  • I. Shabunova and F. Vyskocil, Postdenervation changes of intracellular potassium and sodium measured by ion selective microelectrodes in rat soleus and extensor digitorum longus muscle fibres, Pflügers Arch. 394, 161 (1982).

    Article  PubMed  CAS  Google Scholar 

  • A. E. Shamoo, ed., Carriers and channels in biological systems, Ann. New York Acad. Sci., Vol. 264, 1975.

    Google Scholar 

  • A Shanzer, D. Samuel and R. Korenstein, Lipophilic lithium ion carriers, J. Am. Chem. Soc. 105, 3815 (1983).

    Article  CAS  Google Scholar 

  • S. S. Sheu and H. A. Fozzard, Transmembrane Na* and Ca’-+ electrochemical gradients in cardiac muscle and their relationship to force development, J. Gen. Physiol. 80, 325 (1982).

    Article  PubMed  CAS  Google Scholar 

  • H. Shimazaki, Role of Müller cells and potassium activity in the vertebrate retina with respect to b-wave generation, Thesis, University of Georgia, Athens, Georgia, 1983.

    Google Scholar 

  • O. Shimomura, F. H. Johnson and Y. Saiga, Extraction, purification, and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea, J. Cell. Comp. Physiol. 59, 223 (1962).

    Article  PubMed  CAS  Google Scholar 

  • O. Shimomura and F. H. Johnson, Partial purification and properties of the Chaetopterus luminescence system, in Bioluminescence in Progress, F. H. Johnson and Y. Haneda, eds., Princeton University Press, Princeton, 1966, p. 495.

    Google Scholar 

  • O. Shimomura and F. H. Johnson, Structure of the light-emitting moiety of aequorin, Biochem. 11, 1602 (1972).

    Article  CAS  Google Scholar 

  • O. Shimomura and F. H. Johnson, Chemistry of the calcium-sensitive photoprotein aequorin, 1979, in Ashley and Campbell 79, p. 73.

    Google Scholar 

  • T. Shono, M.Okahara, I. Ikeda, K. Kimura and H. Tamura, Sodium-selective PVC membrane electrodes based on bis(12-crown-4)s, J. Electroanal. Chem. 132, 99 (1982).

    Article  CAS  Google Scholar 

  • M. Shporer and M. M. Civan, The state of water and alkali cations within the intracellular fluids: the contribution of NMR spectroscopy, in Current Topics in Membranes and Transport, F. Bronner and A. Kleinzeller, eds., Vol.9, Academic Press, New York, San Francisco, London, 1977, p. 1.

    Chapter  Google Scholar 

  • R. G. Shulman, ed., Biological Applications of Magnetic Resonance, Academic Press, New York, San Francisco, London, 1979.

    Google Scholar 

  • H. Sies, On metabolic compartmentation: introductory remarks, in Metabolic Compartmentation, in H. Sies, ed., Academic Press, London, 1982, p. 1.

    Google Scholar 

  • O. Siggaard-Andersen, N. Fogh-Andersen and J. Thode, Elimination of the erythrocyte effect on the liquid junction potential in potentiometric measurements on whole blood using mixed salt bridge solutions, Scand. J. Clin. Lab. Invest. Suppl. 165, 43, 43 (1983).

    PubMed  CAS  Google Scholar 

  • O. Siggaard-Andersen, J.Thode and N.Fogh-Andersen, What is “ionized calcium”, Scand. J. Clin. Lab. Invest. Suppl. 165, 43, 11 (1983).

    CAS  Google Scholar 

  • I. A. Silver, Measurement of pH and ionic composition of pericellular sites, Phil. Trans. R. Soc. Lond. B. 271, 261 (1975).

    Article  CAS  Google Scholar 

  • I. A. Silver, Multi-parameter electrodes, 1976, in Kessler et al.76, p.119.

    Google Scholar 

  • W. Simon, W. E. Morf and P.C. Meier, Specifity for alkali and alkaline earth cations of synthetic and natural organic complexing agents in membranes, in Structure and Bonding, Vol. 16, J. D. Dunitz, P. Hemmerich, J. A. Ibers, C. K. Jorgensen, J. B. Neilands, D. Reinen, R. J. P. Williams, eds., Springer Verlag, Berlin, Heidelberg, New York, 1973, p. 113.

    Google Scholar 

  • W. Simon, D. Ammann, H. F. Osswald, P.C. Meier and R. E. Dohner, Applicability of ion-selective electrodes in automated systems for clinical analysis, in Advances in Automated Analysis. Technicon International Congress 1976, E.C. Barton et al., eds., Vol.1, Mediad Inc. Tarrytown, New York, 1977 a, p.59.

    Google Scholar 

  • W. Simon, W. E. Morf and D. Ammann, Calcium ionophores, in Calcium-Binding Proteins and Calcium Function, R H. Wasserman, R. A. Corradino, E. Carafoli, R.H. Kretsinger, D. H. MacLennan and F. L. Siegel, eds., North-Holland, New York, Amsterdam, Oxford, 1977b, p. 50.

    Google Scholar 

  • W. Simon, D. Ammann, M. Oehme and W. E. Morf, Calcium-selective electrodes, Annals New York Acad. Sci. 307, 52 (1978a).

    Article  CAS  Google Scholar 

  • W. Simon, D. Ammann, H. Osswald, M. Oehme and P.C. Meier, Limitations of liquid membrane electrodes, Arzneimittel-Forschung/Drug Research 28, 707 (1978b).

    Google Scholar 

  • W. Simon, D. Ammann, R. A. Dörig, D. Erne, R. J. J. Funck, H.-B. Jenny, E. Pretsch and R. A. Steiner, Flüssigmembranelektroden mit neutralen Ionophoren, in Fortschritte in der elektrochemischen Analytik - Theorie und Anwendungen, Karl-Marx-Universität, ed., Karl-Marx-Universität, Leipzig, 1980, p. 95.

    Google Scholar 

  • W. Simon, D. Ammann, P. Anker, U. Desch and D. M. Band, Ion-selective electrodes and their clini-cal application in the continuous ion monitoring, Annals New York Acad. Sci. 428, 279 (1984a)

    CAS  Google Scholar 

  • W. Simon, E. Pretsch, W. E. Morf, D. Ammann, U. Oesch and O. Dinten, Design and application of neutral carrier-based ion-selective electrodes, Analyst 109, 207 (1984b).

    Article  CAS  Google Scholar 

  • R. D. Slocum and S.J. Roux, Cellular and subcellular localization of calcium in gravistimulated oat coleoptiles and its possible significance in the establishment of tropic curvature, Planta 157, 481 (1983).

    Article  CAS  Google Scholar 

  • F. M. Snell, Some electrical properties of fine-tipped pipette micro-electrodes, 1969, in Lavallée et aí. 69, p. 111.

    Google Scholar 

  • J. H. Sokol, C.O. Lee and F. J. Lupo, Measurement of the free calcium ion concentration in sheep cardiac Purkinje fibers with neutral carrier Ca’-+- selective microelectrodes, Biophys. J. 25, 143a (1979).

    Google Scholar 

  • R. L. Solsky, Ion-selective electrodes in biomedical analysis, CRC Crit. Rev. Anal. Chem. 14, 1 (1982).

    CAS  Google Scholar 

  • G. G. Somjen, Stimulus-evoked and seizure-related responses of extracellular calcium activity in spinal cord compared to those in cerebral cortex, J. Neurophysiol. 44, 617 (1980).

    PubMed  CAS  Google Scholar 

  • G.G. Somjen, The why and how of measuring the activity of ions in extracellular fluid of spinal cord and cerebral cortex, 1981, in Zeuthen 81a, p. 175.

    Google Scholar 

  • G. Somjen, R. Dingledine, B. Connors and B. Allen, Extracellular potassium and calcium activities in the mammalian spinal cord, and the effect of changing ion levels on mammalian neural tissues, 1981b, in Sykovâ et al. 81, p. 159.

    Google Scholar 

  • U. Sonnhof, R. Förderer, W. Schneider and H. Kettenmann, Cell puncturing with a step motor driven manipulator with simultaneous measurement of displacement, Pflügers Arch. 392, 295 (1982).

    Article  PubMed  CAS  Google Scholar 

  • R. M. Spanswick and A.G. Miller, Measurement of the cytoplasmic pH in Nitella translucens, Plant Physiol. 59, 664 (1977).

    Article  PubMed  CAS  Google Scholar 

  • E.-J. Speckmann, C. E. Eiger and A. Lehmenkühler, Penicillin activity in brain tissue: a method for continuous measurement, Electroencephalogr. Clin. Neurophysiol. 56, 664 (1983).

    Article  CAS  Google Scholar 

  • R. W. Sperry, The great cerebral commissure, Sci. Amer. 210, 42 (1964).

    CAS  Google Scholar 

  • R. W. Sperry, Science and Moral Priority, Columbia University Press, New York, 1983.

    Google Scholar 

  • S.F. Spicker and H.T. Engelhardt, Jr., eds., Philosophical Dimensions of the Neuro-Medical Sciences, Reidel Publishing Company, Dordrecht, Holland, 1975.

    Google Scholar 

  • R.J. Stark and J. O’Doherty, Intracellular Na+ and K+ activities during insulin stimulation of rat soleus muscle, Am. J. Physiol. 242, E193 (1982).

    PubMed  CAS  Google Scholar 

  • Z. Stefanac and W. Simon, In-Vitro-Verhalten von Makrotetroliden in Membranen als Grundlage für hochselektive kationenspezifische Elektrodensysteme, Chimia 20, 436 (1966).

    CAS  Google Scholar 

  • Z. Stefanac and W. Simon, Ion specific electrochemical behavior of macrotetrolides in membranes, Microchem.J. 12, 125 (1967).

    Article  CAS  Google Scholar 

  • R. Steinberg and G.tenBruggencate, Dependence of extracellular Ca’+ upon active transport mechanism in cerebellar cortex, Pflügers Arch. 373, R68 (1978).

    Google Scholar 

  • R. A. Steiner, M. Oehme, D. Ammann and W. Simon, Neutral carrier sodium ion-selective micro-electrode for intracellular studies, Anal.Chem. 51, 351 (1979).

    Article  CAS  Google Scholar 

  • R. A. Steiner, Entwicklung von kationenselektiven Carrier-Flüssigmembranmikroelektroden für Aktivitätsbestimmungen im Intra-und Extrazellulärraum, Thesis, ETH Zürich, No. 7099, ADAG Administration and Druck AG, Zürich, 1982.

    Google Scholar 

  • J. Stinnakre, Defection and measurement of intracellular calcium. A comparison of techniques. Trends Neurosci. 4, 46 (1981).

    Article  CAS  Google Scholar 

  • H. Stöckle and G. tenBruggencate, Climbing fiber-mediated rhythmic modulations of potassium and calcium in cat cerebellar cortex, Exp. Neurol. 61, 226 (1978).

    Article  PubMed  Google Scholar 

  • H. Stöckle and G. tenBruggencate, Fluctuation of extracellular potassium and calcium in the cerebellar cortex related to climbing fiber activity, Neurosci. 5, 893 (1980).

    Article  Google Scholar 

  • H. Streb and I. Schulz, Regulation of cytosolic free Ca-+ concentration in acinar cells of rat pancreas, Am.J.Physiol. 245, G347 (1983).

    PubMed  CAS  Google Scholar 

  • K. Suzuki and E. Frömter, The potential and resistance profile of Necturus gallbladder cells, Pflügers Arch. 371, 109 (1977).

    Article  PubMed  CAS  Google Scholar 

  • K. Suzuki, V. Rohlicek and E. Frömter, A quasi-totally shielded, low-capacitance glass-microelectrode with suitable amplifiers for high-frequency intracellular potential and impedance measurements, Pflügers Arch. 378, 141 (1978).

    Article  PubMed  CAS  Google Scholar 

  • E. Sykovâ, P. Hník and L. Vyklickÿ, eds., Ion-Selective Microelectrodes and Their Use in Excitable Tissues, Plenum Press, New York, London, 1981.

    Google Scholar 

  • G. Szabo, G. Eisenman, R. Laprade, S. M. Ciani and S. Krasne, Experimentally observed effects of carriers on the electrical properties of bilayer membranes-equilibrium domain, 1973, in Membranes, Vol.2, G. Eisenman, ed., Marcel Dekker, Inc., New York, 1973, p. 179.

    Google Scholar 

  • J. Szentagothâi, The local neuronal apparatus of the cerebral cortex, 1978, in Buser and RougeulBuser 78, p. 131.

    Google Scholar 

  • I. Tabushi, Y. Kuroda and K. Yokota, A,B,D,F-Tetrasubstituted ß-cyclodextrin as artificial channel compound, Tetrahedron Letters 23, 4601 (1982).

    Article  CAS  Google Scholar 

  • H. Tamura, K. Kimura and T. Shono, Thallium(I)-selective PVC membrane electrodes based on bis(crown ether)s, J. Electroanal. Chem. 115, 115 (1980).

    Article  CAS  Google Scholar 

  • H. Tamura, K. Kimura and T. Shono, Coated wire sodium-and potassium-selective electrodes based on bis(crown ether) compounds, Anal. Chem. 54, 1224 (1982).

    Article  CAS  Google Scholar 

  • C. Tanford, S. A. Swanson and W. S. Shore, Hydrogen ion equilibria of bovine serum albumin, J. Am. Chem. Soc. 77, 6414 (1955).

    Article  CAS  Google Scholar 

  • I. Tasaki and I. Singer, Some problems involved in electric measurements of biological systems, Ann. New York Acad. Sci. 148, 36 (1968).

    Article  CAS  Google Scholar 

  • M. Tauchi and R. Kikuchi, A simple method for beveling micropipettes for intracellular recording and current injection, Pflügers Arch. 368, 153 (1977).

    Article  PubMed  CAS  Google Scholar 

  • C. V. Taylor and D. M. Whitaker, Potentiometric determination in the protoplasm and cell-sap of Nitella. Protoplasma 3, 1 (1927).

    Article  CAS  Google Scholar 

  • P. S. Taylor and R. C. Thomas, The effect of leakage on micro-electrode measurements of intracellular sodium activity in crab muscle fibres, J. Physiol. 352, 539 (1984).

    PubMed  CAS  Google Scholar 

  • G. tenBruggencate, C. Nicholson and R. Steinberg, Rhythmic modulation of extracellular Ca’+-and K+-levels in the cerebellar cortex related to climbing fiber activity, Pflügers Arch. 368, R37 (1977).

    Google Scholar 

  • G. Bruggencate and R. Steinberg, Effects of ouabain and adenosine on extracellular Ca’-+ and K+, as measured with ion selective microelectrodes in cerebellar cortex, Naunyn-Schmiedeberg’s Archives of Pharmacology, 302, R55 (1978 a).

    Google Scholar 

  • G. tenBruggencate, R. Steinberg, H. Stöckle and C. Nicholson, Modulation of extracellular Ca’-+-and K+-levels in the mammalian cerebellar cortex, in Iontophoresis and Transmitter Mechanisms in the Mammalian Central Nervous System, R. W. Ryall and J. S. Kelly, eds., Elsevier/ North-Holland, Amsterdam, 1978 b, p.412.

    Google Scholar 

  • G. tenBruggencate, A. Ullrich, M. Galvan, H. Förstl and P. Baierl, Effects of lithium application upon extracellular potassium structures of the peripheral and central nervous system of rats, 1981, in Lübbers et al.81, p.135.

    Google Scholar 

  • S. M. Theg and W. Junge, The effect of low concentrations of uncouplers on the detectability of proton deposition in thylakoids. Evidence for subcompartmentation and preexisting pH differences in the dark, Biochim. Biophys. Acta 723, 294 (1983).

    Article  CAS  Google Scholar 

  • A. P. Thoma, A. Viviani-Nauer, S. Arvanitis, W. E. Morf and W. Simon, Mechanism of neutral carri- er mediated ion transport through ion-selective bulk membranes, Anal. Chem. 49, 1567 (1977).

    CAS  Google Scholar 

  • J. A. Thomas, P.C. Kolbeck and T. A. Langworthy, Spectrophotometric determination of cytoplasmic and mitochondrial pH transitions using trapped pH indicators, 1982, in Nuccitelli and Deamer 82, p. 105.

    Google Scholar 

  • M. V. Thomas, Techniques in Calcium Research, Academic Press, London, 1982.

    Google Scholar 

  • R. C. Thomas, Membrane current and intracellular sodium changes in a snail neurone during extrusion of injected sodium, J. Physiol. 201, 495 (1969).

    PubMed  CAS  Google Scholar 

  • R. C. Thomas, New design for sodium-sensitive glass microelectrode, J. Physiol. 210, 82 P (1970).

    Google Scholar 

  • R. C. Thomas, Intracellular pH of snail neurones measured with new pH-sensitive glass microelectrode, J. Physiol. 238, 159 (1974).

    PubMed  CAS  Google Scholar 

  • R. C. Thomas, W. Simon and M.Oehme, Lithium accumulation by snail neurones measured by a new Li“-sensitive microelectrode, Nature 258, 754 (1975).

    Article  PubMed  CAS  Google Scholar 

  • R. C. Thomas, Construction and properties of recessed-tip micro-electrodes for sodium and chloride ions and pH, 1976, in Kessler et aí. 76, p. 141.

    Google Scholar 

  • R. C. Thomas, The role of bicarbonate, chloride and sodium ions in the regulation of intracellular pH in snail neurones, J. Physiol. 273, 317 (1977).

    PubMed  CAS  Google Scholar 

  • R.C. Thomas, Ion-Sensitive Intracellular Microelectrodes. How to make and use them, Academic Press, London, New York, San Francisco, 1978.

    Google Scholar 

  • R. C. Thomas and C. J. Cohen, A liquid ion-exchanger alternative to KCl for filling intracellular reference microelectrodes, Pflügers Arch. 390, 96 (1981).

    Article  PubMed  CAS  Google Scholar 

  • R. C. Thomas, Experimental displacement of intracellular pH and the mechanism of its subsequent recovery, J. Physiol. 354, 3 P (1984).

    Google Scholar 

  • H.T. Tien, Bilayer Lipid Membranes (BLM), Marcel Dekker, Inc., New York, 1974.

    Google Scholar 

  • U. Tietze and Ch. Schenk, Halbleiter-Schaltungstechnik, Springer Verlag, Berlin, Heidelberg, New York, 1980.

    Google Scholar 

  • T. Tornita, Single and coaxial microelectrodes in the study of the retina, 1969, in Lavallée et al. 69, p. 124.

    Google Scholar 

  • J.L. Toner, D.S. Daniel and S.M. Geer, Hemispherands and sodium-selective compositions and electrodes containing same, United States Patent 4,476, 007, 1984.

    Google Scholar 

  • J. L. Treasure, D. W. Ploth and T. Treasure, Continuous measurement of potassium concentration in blood during hemodialysis with an ion-specific electrode, in Kessler et al. 85, p. 297.

    Google Scholar 

  • A.S. Troshin, Problems of Cell Permeability, Pergamon Press, Oxford, London, Edinburgh, New York, Toronto, Paris, Braunschweig, 1966.

    Google Scholar 

  • G. Trube, D. Pelzer and H.-M. Piper, The importance of membrane integrity for the measurement of electrical properties of isolated rat heart myocytes, Pflügers Arch. Suppl. to 394, R12 (1982).

    Google Scholar 

  • M. Tsacopoulos and A. Lehmenkühler, A double-barrelled Pt-microelectrode for simultaneous measurement of POD and bioelectrical activity in excitable tissues, Experientia 33, 1337 (1977).

    Article  PubMed  CAS  Google Scholar 

  • M. Tsacopoulos, R. K. Orkand, J. A. Coles, S. Levy and S. Poitry, Oxygen uptake occurs faster than sodium pumping in bee retina after a light flash, Nature 301, 604 (1983).

    Article  PubMed  CAS  Google Scholar 

  • R. Y. Tsien, New calcium indicators and buffers with high selectivity against magnesium and pro-teins: Design, synthesis and properties of prototype structures, Biochemistry 19, 2396 (1980).

    Article  PubMed  CAS  Google Scholar 

  • R. Y. Tsien and T. J. Rink, Neutral carrier ion-selective microelectrodes for measurement of intra-cellular free calcium, Biochim. Biophys. Acta 599, 623 (1980).

    Article  CAS  Google Scholar 

  • R. Y. Tsien, A non-disruptive technique for loading calcium buffers and indicators into cells, Nature 290, 527 (1981).

    Article  PubMed  CAS  Google Scholar 

  • R. Y. Tsien and T.J. Rink, Ca-+-selective electrodes: a novel PVC-gelled neutral carrier mixture compared with other currently available sensors, J. Neurosci. Meth. 4, 73 (1981).

    Article  CAS  Google Scholar 

  • J. T. Tupper and H. Tedeschi, Microelectrode studies on the membrane properties of isolated mitochondria, Proc. Natl. Acad. Sci. 63, 370 (1969).

    Article  CAS  Google Scholar 

  • I. Uemasu and Y. Umezawa, Comparison of definitions of response times for copper(II) ion selective electrodes, Anal. Chem. 54, 1198 (1982).

    CAS  Google Scholar 

  • I. Uemasu and Y. Umezawa, Single ion activity at high ionic strengths with ion-selective electrodes and the Debye-Hückel equation, Anal. Chem. 55, 386 (1983).

    CAS  Google Scholar 

  • K. Ugurbil, R.G. Shulman and T. R. Brown, High-resolution 31P and 13C nuclear magnetic resonance studies of Escherichia coli cells in vivo, 1979, in Shulman 79, p. 537.

    Google Scholar 

  • E. Ujec, O. Keller, V. Pavlík and J. Machek, The electrical parameters of a coaxial, low-resistance, potassium-selective microelectrode, Physiol. Bohemoslov. 27, 570 (1978).

    Google Scholar 

  • E. Ujec, O. Keller, J. Machek and V. Pavlík, Low impedance coaxial K+ selective microelectrodes, Pflügers Arch. 382, 189 (1979).

    PubMed  CAS  Google Scholar 

  • E. Ujec, E. E. O. Keller, N. Kil, V. Pavlík and J. Machek, Low-impedance, coaxial, ion-selective, double-barrel microelectrodes and their use in biological measurements, Bioelectrochem. Bioenergetics 7, 363 (1980).

    CAS  Google Scholar 

  • E. Ujec, O. Keller, N. Kn2, V. Pavlík and J. Machek, Double-barrel ion-selective [K+, Ca-+, Cl]- coaxial microelectrodes (ISCM) for measurements of small and rapid changes in ion activities, 1981, in Sykovâ et al.81, p.41.

    Google Scholar 

  • A. Ullrich, P. Baien and G. tenBruggencate, Extracellular potassium in rat cerebellar cortex during acute and chronic lithium application, Brain Res. 192, 287 (1980).

    Article  PubMed  CAS  Google Scholar 

  • A. Ullrich, R. Steinberg, P. Baierl and G. tenBruggencate, Changes in extracellular potassium and calcium in rat cerebellar cortex related to local inhibition of the sodium pump, Pflügers Arch. 395, 108 (1982).

    Article  PubMed  CAS  Google Scholar 

  • M. Vassalle and C.O. Lee, The relationship among intracellular sodium activity, calcium, and strophanthidin inotropy in canine cardiac Purkinje fibers, J. Gen. Physiol. 83, 287 (1984).

    Article  PubMed  CAS  Google Scholar 

  • C. A. Vega and R. G. Bates, Standards for pH measurements in isotonic saline media of ionic strength I = 0.16, Anal. Chem. 50, 1295 (1978).

    Google Scholar 

  • F. Vögtle, H. Puff, E. Friedrichs and W. M. Müller, Selective inclusion and orientation of chloroform in the molecular cavity of a 30-membered hexalactam host, J.Chem. Soc., Chem. Commun. 1982, 1398.

    Google Scholar 

  • F. Vögtle, T. Kleiner, R. Leppkes, M. W. Läubli, D. Ammann and W. Simon, Neutrale lonophore mit Selektivität für Na+, Chem. Ber. 116, 2028 (1983).

    Article  Google Scholar 

  • H. Völkl, J. Geibel, W. Rehwald and F. Lang, A microelectrode for continuous monitoring of redox activity in isolated perfused tubule segments, Pflügers Arch. 400, 393 (1984).

    Article  PubMed  Google Scholar 

  • L. L. Voronin, Long-term potentiation in the hippocampus, Neurosci. 10, 1051 (1983).

    Article  CAS  Google Scholar 

  • P. Vuilleumier, P. Gazzotti, E. Carafoli and W. Simon, The translocation of Ca-+ across phospho-lipid bilayers induced by a synthetic neutral Ca-+-ionophore, Biochim.Biophys.Acta 467, 12 (1977).

    Article  PubMed  CAS  Google Scholar 

  • F. Vyskocil and N. Ki-i2, Modifications of single and double-barrel potassium specific microelectrodes for physiological experiments, Pflügers Arch. 337, 265 (1972).

    Article  CAS  Google Scholar 

  • W.J. Waddell and T.C. Butler, Calculation of intracellular pH from the distribution of 5,5-dimethyl-2,4-oxazolidinedione (DMO). Application to skeletal muscle of the dog. J. Clin. Invest. 38, 720 (1959).

    Article  PubMed  CAS  Google Scholar 

  • W.J. Wadman and U. Heinemann, Laminar profiles of [K 11, and 1Ca2+1, in region CA1 of the hippocampus of kindled rats, 1985, in Kessler et aí. 85, p. 221.

    Google Scholar 

  • H. Wakasugi, T. Kimura, W. Haase, A. Kribben, R. Kaufmann and I. Schulz, Calcium uptake into acini from rat pancreas: evidence for intracellular ATP-dependent calcium sequestration, J. Membr. Biol. 65, 205 (1982).

    Article  PubMed  CAS  Google Scholar 

  • J. Walden, E.-J. Speckmann and A. Lehmenkühler, Continuous measurement of pentylenetetrazol (PTZ) by a liquid ion exchanger microelectrode, Pflügers Arch. Suppl. to 392, R43 (1982).

    Google Scholar 

  • J. Walden, A. Lehmenkühler, E.-J. Speckmann and O. W. Witte, Continuous measurement of pentylenetetrazol concentration by a liquid ion exchanger microelectrode, J. Neurosci. Methods 11, 187 (1984).

    Article  PubMed  CAS  Google Scholar 

  • J. L. Walker, Jr., Ion specific liquid ion exchanger microelectrodes, Anal. Chem. 43, 89 A (1971).

    Google Scholar 

  • J. H. Wang and E. Copeland, Equilibrium potentials of membrane electrodes, Proc. Natl. Acad. Sci. 70, 1909 (1973).

    Article  PubMed  CAS  Google Scholar 

  • W. Wang, H. Oberleithner, F. Lang and G. Messner, cAMP hyperpolarizes the cell membrane potential and decreases intracellular Na’ activity in frog proximal tubule, Pflügers Arch. Suppl. to 394, R27 (1982).

    Google Scholar 

  • W. Wang, H. Oberleithner and F. Lang, The effect of cAMP on the cell membrane potential and intracellular ion activities in proximal tubule of Rana esculenta, Pflügers Arch. 396, 192 (1983).

    Article  PubMed  CAS  Google Scholar 

  • W. Wang, G. Messner, H. Oberleithner, F. Lang and P. Deetjen, The effect of ouabain on intracellular activities of K+, Nat, Cl-, H+ and Ca’ + in proximal tubules of frog kidneys, Pflügers Arch. 401, 6 (1984).

    Article  PubMed  CAS  Google Scholar 

  • J. A. Wasserstrom, D. J. Schwartz and H. A. Fozzard, Catecholamine effects on intracellular sodium activity and tension in dog heart, Am. J. Physiol. 243, H670 (1982).

    PubMed  CAS  Google Scholar 

  • B.S. Weakly, A Beginner’s Handbook in Biological Transmission Electron Microscopy, Churchill Livingstone, Edinburgh, London, Melbourne, New York, 1981.

    Google Scholar 

  • D.J. Webb and R. Nuccitelli, Intracellular pH changes accompanying the activation of development in frog eggs: comparison of pH microelectrodes and 31P-NMR measurements, 1982, in Nuccitelli and Deamer 82, p. 293.

    Google Scholar 

  • E. Weber and F. Vögtle, Progress in crown ether chemistry (Part IV B), Kontakte 1, 24 (1981).

    Google Scholar 

  • D. Wegmann, H. Weiss, D. Ammann, W. E. Morf, E. Pretsch, K. Sugahara and W. Simon, Anion-selective liquid membrane electrodes based on lipophilic quaternary ammonium compounds, Mikrochim. Acta 1984, 1.

    Google Scholar 

  • R. Weiler, Triangular tubing: new, fast-filling microelectrodes for the intracellular use of HRP, Naturwissenschaften 69, 285 (1982).

    Article  PubMed  CAS  Google Scholar 

  • R. Weingart and P. Hess, Interaction between pH, and pCa, in cardiac tissue, 1981, in Sykovâ et al.81, p.307.

    Google Scholar 

  • R. Weingart and G. Niemeyer, Assessment of preretinal pH by ionselective microelectrodes, Experientia 39, 642 (1983).

    Google Scholar 

  • R. Weingart and P. Hess, Free calcium in sheep cardiac tissue and frog skeletal muscle measured with Ca’-+-selective microelectrodes, Pflügers Arch. 402, 1 (1984).

    Article  PubMed  CAS  Google Scholar 

  • S.A. Weinman and L. Reuss, Na+-H+ exchange and Na+ entry across the apical membrane of Necturus gallbladder, J. Gen. Physiol. 83, 57 (1984).

    Article  PubMed  CAS  Google Scholar 

  • M. Welti, E. Pretsch, E. Clementi and W. Simon, Interaction of Ca’-+ and Mgt+ with ionophores studied by using a pair-potential model based on ab initio calculations, Heiv. Chim. Acta 65, 1996 (1982).

    Google Scholar 

  • R.J. Werrlein, Cells and tissue culture systems, 1981, in Zeuthen 81 a, p.257.

    Google Scholar 

  • J. W. Westley, Ch. M. Lin, J. F. Blount, L. H. Sello, N. Troupe and P.A. Miller, Isolation and characterization of a novel polyether antibiotic of the pyrrolether class, antibiotic X-14885 A, J. Antibiotics 36, 1275 (1983).

    Article  CAS  Google Scholar 

  • W.J. Whalen, The P02 in isolated muscle measured with an intracellular electrode, 1969, in Laval-lee et al.69, p.396.

    Google Scholar 

  • H. G. Wieser and M.G. Yasargil, Selective amygdalohippocampectomy as a surgical treatment of mesiobasal limbic epilepsy, Surg. Neurol. 17, 445 (1982).

    CAS  Google Scholar 

  • H.G. Wieser, Electroclinical Features of the Psychomotor Seizure, Fischer, Stuttgart, New York; Butterworths, London, 1983.

    Google Scholar 

  • R.J.P. Williams, The biochemistry of sodium, potassium, magnesium, and calcium, Quart. Rev. Chem. Soc. 24, 331 (1970).

    Article  CAS  Google Scholar 

  • N. K. Wills and S. A. Lewis, Intracellular Na activity as a junction of Na+ transport rate across a tight epithelium, Biophys.J. 30, 181 (1980).

    Article  PubMed  CAS  Google Scholar 

  • N. K. Wills, Apical membrane potassium and chloride permeabilities in surface cells of rabbit descending colon epithelium, J. Physiol. 358, 433 (1985).

    PubMed  CAS  Google Scholar 

  • K. Winnefeld and H. Schröter, Zur Problematik von Chloridaktivitätsmessungen in Protein(Hämoglobin)Lösungen, Z. Med. Lab. Diagn. 22, 350 (1981).

    PubMed  CAS  Google Scholar 

  • S. Wischnitzer, Introduction to Electron Microscopy, Pergamon Press, New York, 1981.

    Google Scholar 

  • E. M. Wright, Electrophysiology of plasma membrane vesicles, Am. J. Physiol. 246, F363 (1984).

    PubMed  CAS  Google Scholar 

  • B. W. Wright, M. L. Lee, S. W. Graham, L. V. Phillips and D. M. Hercules, Glass surface analytical studies in the preparation of open tubular columns for gas chromatography, J. Chromatogr. 199, 355 (1980).

    Article  CAS  Google Scholar 

  • S. T. Wu, G. M. Pieper, J. M. Salhany and R. S. Eliot, Measurement of free magnesium in perfused and ischemic arrested heart muscle. A quantitative phosphorus-31 nuclear magnetic resonance and multiequilibria analysis, Biochemistry 20, 7399 (1981).

    Article  PubMed  CAS  Google Scholar 

  • H.-R. Wuhrmann, W. E. Morf and W. Simon, Modellberechnung der EMK und der Ionenselektivität von Membranelektroden-Meßketten, Hely. Chim. Acta 56, 1011 (1973).

    Article  CAS  Google Scholar 

  • P. Wuhrmann, H. Ineichen, U. Riesen-Willi and M. Lezzi, Change in nuclear potassium electrochemical activity and puffing of potassium-sensitive salivary chromosome regions during Chironomus development, Proc. Natl. Acad. Sci. 76, 806 (1979).

    Article  PubMed  CAS  Google Scholar 

  • P. Wuhrmann and M. Lezzi, K+-and Na+-activity measurements in larval salivary glands of Chironomus tentans, Europ. J. Cell. Biol. 22, 473 (1980).

    Google Scholar 

  • U. Wuthier, H. V. Pham, R. Zünd, D. Welti, R. J. J. Funck, A. Bezegh, D. Ammann, E. Pretsch and W. Simon, Tin organic compounds as neutral carriers for anion selective electrodes, Anal. Chem. 56, 535 (1984).

    CAS  Google Scholar 

  • W. Wuttke and W. R. Schlue, Potassium activity in leech glial cells measured with ion-sensitive microelectrodes, Pflügers Arch. Suppl. to 394, R47 (1982).

    Google Scholar 

  • H. Yamaguchi and N. L. Stephens, Determination of intracellular pH of airway smooth muscle using recessed tip pH microelectrode, in Proc. Int. Congr. Physiol. Sci., Paris, 1977, Vol. 13, p. 824.

    Google Scholar 

  • M. Yamauchi, A.Jyo and N. Ishibashi, Potassium ion-selective membrane electrodes based on naphtho-15-crown-5, A.al. Chim. Acta 136, 399 (1982).

    Article  CAS  Google Scholar 

  • H.J.C. Yeh, F.J. Brinley, Jr. and E. D. Becker, Nuclear magnetic resonance studies on intracellular sodium in human erythrocytes and frog muscle, Biophys.J. 13, 56 (1973).

    Article  PubMed  CAS  Google Scholar 

  • S. Yoshikami, J. S. George and W. A. Hagins, Light-induced calcium fluxes from outer segment layer of vertebrate retinas, Nature 286, 395 (1980a).

    Article  PubMed  CAS  Google Scholar 

  • S. Yoshikami, J. George and W. A. Hagins, Light causes large fast Ca-+ efflux from outer segments of live retinal rods, Fed. Proc. 39, 2066 (1980b).

    Google Scholar 

  • K. Yoshitomi and E. Frömter, Cell pH of rat renal proximal tubule in vivo and the conductive nature of peritubular HCO3 (OH-) exit, Pflügers Arch. 402, 300 (1984a).

    Article  PubMed  CAS  Google Scholar 

  • K. Yoshitomi and E. Frömter, The intracellular pH of rat kidney proximal tubular cells in vivo, Pflügers Arch. Suppl. to 400, R20 (1984b).

    Google Scholar 

  • T. Zeuthen and C. Monge, Intra-and extracellular gradients of electrical potential and ion activities of the epithelial cells of the rabbit ileum in vivo recorded by microelectrodes, Phil. Trans. R. Soc. Lond. B. 71, 277 (1975).

    Article  Google Scholar 

  • T. Zeuthen, Gradients of chemical and electrical potentials in the gallbladder, J. Physiol. 256, 32 P (1976a).

    Google Scholar 

  • T. Zeuthen, A double-barrelled Na+-sensitive microelectrode, J. Physiol. 254, 8P (1976b).

    PubMed  CAS  Google Scholar 

  • T. Zeuthen, Intracellular gradients of electrical potential in the epithelial cells of the Necturus gallbladder, J. Membr. Biol. 33, 281 (1977).

    Article  PubMed  CAS  Google Scholar 

  • T. Zeuthen, Intracellular gradients of ion activities in the epithelial cells of the Necturus gallbladder recorded with ion-selective microelectrodes, J. Membr.Biol. 39, 185 (1978).

    Article  PubMed  CAS  Google Scholar 

  • T. Zeuthen, How to make and use double-barrelled ion-selective microelectrodes, in Current Topics in Membranes and Transport, E. Boulpaep and G. Giebisch, eds., Vol. 13, Academic Press, New York, 1980.

    Google Scholar 

  • T. Zeuthen, ed., The Application of Ion-Selective Microelectrodes, Research Monographs in Cell and Tissue Physiology, Vol. 4, Elsevier/North-Holland Biomedical Press, Amsterdam, New York, Oxford, 1981a.

    Google Scholar 

  • T. Zeuthen, Ion transport in leaky epithelia studied with ion-selective microelectrodes, 1981b, in Zeuthen 81a, p.27.

    Google Scholar 

  • T. Zeuthen, Relations between intracellular ion activities and extracellular osmolarity in Necturus gallbladder epithelium, J. Membr. Biol. 66, 109 (1982).

    Article  PubMed  CAS  Google Scholar 

  • A. F. Zhukov, D. Erne, D. Ammann, M. Güggi, E. Pretsch and W. Simon, Improved lithium ion-selective electrode based on a lipophilic diamide as neutral carrier, Anal. Chim. Acta 131, 117 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ammann, D. (1986). References. In: Ion-Selective Microelectrodes. Advances in Exprerimental Medicine and Biology, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-52507-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-52507-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16222-3

  • Online ISBN: 978-3-642-52507-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics