Bayesian Electromagnetic Imaging

  • M. Roussignol
  • V. Jouanne
  • M. Menvielle
  • P. Tarits
Conference paper
Part of the Statistics and Computing book series (SCO)


This work presents a method to find rock conductivities in a zone from electromagnetic measurements on the surface of the earth. It uses a stochastic algorithm to find a Bayesian estimator of the conductivities. The algorithm is tested on a synthetic model made up of an heteregeneous thin sheet inbedded in a stratified substratum.

Key words

Electromagnetism Inverse Problem Bayesian Statistic Stochastic Algorithm. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Backus, G. E. (1988). Bayesian inference in geomagnetism. Geophysical Journal, 92, 125–142.CrossRefzbMATHGoogle Scholar
  2. Barthes, V. and Vasseur, G. (1980). An inverse problem for electromagnetic prospection.Google Scholar
  3. Counil, J.L., Le Mouel, J.L. and Menvielle, M. (1986). Associate and conjugate direction concepts in magnetotellurics. Annales Geophysicae, 4, B, 115–130.Google Scholar
  4. Eggers, D.E. (1982). An eigenstate formulation of the magnetotelluric impedance tensor. Geophysics, 47, 1204–1214.CrossRefGoogle Scholar
  5. Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images. IEEE Trans. Pattern Analysis and Machine Intelligence, 6, 721–741.Google Scholar
  6. Gibert, D. and Vineux, J. (1991). Electromagnetic imaging and simulated annealing. J. Geophys. Res., 96, 8057–8067.Google Scholar
  7. Kirkpatrick, S. (1984). Optimisation by simulated annealing: quantitative studies. J. Stat. Phys., 34, 975–986.Google Scholar
  8. La Torraca, G.A., Madden, T.R. and Kor inga, J. (1986). An analysis of the magnetotelluric impedance tensor for three-dimensional conductivity structures. Geophysics, 51, 1819–1829.CrossRefGoogle Scholar
  9. Mackie, R.L., Bennett, B.R., Madden, T.R. (1988). Long period magnetotellutic measurements near the central California coast: a land-locked view of the conductivity structure under the Pacific ocean. Geophys. J. Royal Astr. Soc., 95, 181–194.Google Scholar
  10. Mareschal, M. and Vasseur, G. (1984). Bimodal induction in non-uniform thin sheets: do the present algorithms work for regional studies. J. Geophys., 55, 203–213.Google Scholar
  11. Morse, P. M., Feshback, H. (1953). Methods of theoritical physics. Mc Graw-Hill New York. Press, S.J. (1989). Bayesian statistics: principle, models ans applications. John Wiley sons. Tarantola, A. ( 1987 ). Inverse problem theory. Elsevier Science Publishers B. V..Google Scholar
  12. Tarits, P., Jouanne, V., Menvielle, M., Roussignol, M. (1991). Bayesian statistics in geophysics: example of the magnetotelluric 1-d inverse problem. submitted to J. Geophys..Google Scholar
  13. Vasseur, G. and Weidelt, P. (1977). Bimodal electromagnetic induction in non-uniform thin sheets with an application to thrnothem Pyrenean induction anomaly. Geophys. J. R. astr. Soc., 51, 669–690.Google Scholar
  14. Weidelt, P. (1975). Electromagnetic induction in three-dimensional structures. J. Geophys., 41, 85–109.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • M. Roussignol
    • 1
  • V. Jouanne
    • 2
  • M. Menvielle
    • 2
  • P. Tarits
    • 2
  1. 1.Laboratoire de Statistique et Probabilités, U.F.R. de MathématiquesUniversité des Sciences et Technologies de LilleVilleneuve d’Ascq CedexFrance
  2. 2.Institut de Physique du Globe de ParisLaboratoire de GéomagnétismeParis Cedex 05France

Personalised recommendations