Skip to main content

Part of the book series: Werkstoff-Forschung und -Technik ((WFT,volume 8))

  • 190 Accesses

Zusammenfassung

Beim Zug-, Biege- und Druckversuch liegt eine einachsige Belastung vor. In Bauteilen treten dagegen häufig mehrachsige Spannungen auf. Dabei können auch bei einachsiger äußerer Belastung mehrachsige Spannungszustände entstehen, z.B. in gekerbten Bauteilen. Rotierende Bauteile oder Komponenten unter Innendruck weisen mehrachsige Spannungszustände auf. Auch Thermospannungen sind im allgemeinen mehrachsig.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zu Kapitel 7

zu Kapitel 7.2

  1. G.D. Sandel, Die Anstrengungsfrage, Bauzeitung 95, 1930, 335–338.

    Google Scholar 

  2. P. Kuhn, Grundzüge einer allgemeinen Festigkeitshypothese, Institut für Maschinenkonstruktionslehre, Universität Karlsruhe, 1980.

    Google Scholar 

zu Kapitel 7.3.1

  1. J. Takagi, M.C. Shaw, Brittle fracture initiation under complex stress states. Trans. ASME. Journal of Engineering for Industry, 105, 1983, 143–149.

    Article  Google Scholar 

zu Kapitel 7.3.2

  1. M.C. Shaw, J.P. Avery, Tensile fracture loci for brittle material containing spherical voids, Trans. ASME, Journal of Engineering Materials and Technology 108, 1986, 222–229.

    Article  Google Scholar 

zu Kapitel 7.3.3

  1. B. Paul, L. Mirandy, An improved fracture criterion for three — dimensional stress state, Trans. ASME, Journal of Engineering Materials and Technology 98, 1976, 159–163.

    Article  Google Scholar 

zu Kapitel 7.3.4

  1. J.J. Petrovic, Mixed — mode fracture of hotpressed Si3N4 Journal of the American Ceramic Society 68, 1985, 348–355.

    Article  CAS  Google Scholar 

  2. S.K. Shetty, A.R. Rosenfield, W.H. Duckworth, Mixed — mode fracture in biaxial stress state: application of the diametrical — compression (brasilian disk) test, Engineering Fracture Mechanics 26, 1987, 825–840.

    Article  Google Scholar 

  3. G. Alpa, On a statistical approach to brittle rupture for multiaxial states of stress, Engineering Fracture Mechanics 19, 1984, 881–901.

    Article  Google Scholar 

zu Kapitel 7.3.6, s. [7.8]

  1. A.G. Evans, A general approach for the statistical analysis of multi-axial fracture, Journal of the American Ceramic Society 61, 1978, 302–308.

    Article  CAS  Google Scholar 

  2. S.B. Batdorf, H.L. Heinisch, Weakest link theory reformulated for arbitrary fracture criterion, Journal of the American Ceramic Society 61, 1978, 355–358.

    Article  Google Scholar 

  3. J.P. Gyekenyesi, N.N. Nemeth, Surface flaw reliability analysis of ceramic components with the SCARE finite element postprocessor program, Trans. ASME, Journal of Engineering for Gas Turbines and Powers 109, 1987, 274–281.

    Article  Google Scholar 

  4. J. Lemon, Statistical approaches to failure for ceramic reliability assesment, Journal of the American Ceramic Society 71, 1988, 106–112.

    Article  Google Scholar 

zu Kapitel 7.4.1

  1. M.N. Giovan, G. Sines, Strength of a ceramic at high temperatures under biaxial and uniaxial tension, Journal of the American Ceramic Society 64, 1981, 68–73.

    Article  CAS  Google Scholar 

  2. W. Schmitt, K. Blank, G. Schönbrunn, Eyperimentelle Spannungsanalyse zum Doppelringversuch, Sprechsaal 116, 1983, 397–405.

    Google Scholar 

  3. H. Fessler, D.C. Fricker, A theoretical analysis of the ring — on — ring loading disc test, Journal of the American Ceramic Society 67, 1984, 582–588.

    Article  Google Scholar 

  4. U. Soltes, H. Richter, R. Kienzler, The concentric — ring — test and its application for determining the surface strength of ceramics, in High Tech Ceramics, Elsevier Science Publishers, 1987, 149–158.

    Google Scholar 

zu Kapitel 7.4.2

  1. D.K. Shetty, A.R. Rosenfield, P.Mc Guire, G.K. Bansal, W.H. Duckworth, Biaxial flexure test for ceramics, American Ceramic Society Bulletin 59, 1980, 1193–1197.

    Google Scholar 

  2. D.K. Shetty, A.R. Rosenfield, P.Mc Guire, G.K. Bansal, W.H. Duckworth, Biaxial fracture studies of a glass ceramic, Journal of the American Ceramic Society 64, 1981, 1–4.

    Article  Google Scholar 

zu Kapitel 7.4.3

  1. P.J. F. Wright, Comments on an indirect tensile test on concrete cylinders Magazine of Concrete Research 7, 1955, 87–96.

    Google Scholar 

  2. M.C. Shaw, P.M. Braiden, G.J. De Salvo, The disk test for brittle materials, Trans. ASME, Journal of Basic Engineering and Industry, 1975, 77–87.

    Google Scholar 

  3. G. Szendi; Horvath, Fracture toughness determination of brittle materials using small to extremely small specimens, Engineering Fracture Mechanics 13, 1980, 955–961.

    Article  Google Scholar 

  4. H.J. Petroski, R.P.Ojdrovic, The concrete cylinder: stress analysis and failure modes, International Journal of Fracture 34, 1987, 263–279.

    Article  Google Scholar 

zu Kapitel 7.4.4

  1. L.J. Boutman, S.M. Krishnakuman, P.K. Mallick, Effects of combined stresses on fracture of alumina and graphite, Journal of the American Ceramic Society 53, 1970, 649–654.

    Article  Google Scholar 

  2. M. Adams, G. Sines, Determination of biaxial compressive strength of a sintered alumina ceramic, Journal of the American Ceramic Society 59, 1976, 300–304.

    Article  CAS  Google Scholar 

  3. M.G. Stout, J.J. Petrovic, Multiaxial loading fracture of Al2O3 tubes: I, experiments, Journal of the American Ceramic Society 67, 1984, 14–18.

    Article  Google Scholar 

  4. K. Ikeda, H. Igaki, Fracture criterion for alumina ceramics subjected to triaxial stresses, Journal of the American Ceramic Society 67, 1984, 538–544.

    Article  CAS  Google Scholar 

  5. R.E. Ely, Strength of titania and aluminum silicate under combined stresses, Journal of the American Ceramic Society 55, 1972, 347–350.

    Article  CAS  Google Scholar 

  6. S. Sato, H. Awaji, K. Kawamata, A. Kurumada, T. Oku, Fracture criteria of reactor graphite under multiaxial stresses, Nuclear Engineering and Design 103, 1987, 291–300.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Munz, D., Fett, T. (1989). Mehrachsigkeitskriterien. In: Mechanisches Verhalten keramischer Werkstoffe. Werkstoff-Forschung und -Technik, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-51710-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-51710-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51508-1

  • Online ISBN: 978-3-642-51710-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics