Skip to main content

Part of the book series: Werkstoff-Forschung und -Technik ((WFT,volume 8))

  • 204 Accesses

Zusammenfassung

Der Bruch von keramischen Werkstoffen geht von Fehlern aus. Diese können während der Werkstoffherstellung in Form von Poren, Rissen oder Einschlüssen oder während der Oberflächenbearbeitung entstehen. Das Versagen erfolgt durch die Ausbreitung von Rissen, die von diesen Fehlern ausgehen. Die Sprödigkeit der keramischen Werkstoffe wird durch den geringen Widerstand gegen die Rißausbreitung verursacht. Die große Streuung der mechanischen Eigenschaften ist auf die Streuung der Fehlergröße zurückzuführen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zu Kapitel 3

  1. R. Steinbrech, R. Knehans, W. Schaarwächter, Increase of crack resistance during slow crack growth in Al2O3 bend specimens, Journal of Materials Science 18, 1983, 265–270.

    Article  Google Scholar 

  2. L.A. Simpson, R.R. Hsu, G. Merret, The application of the single — edge notched beam to fracture toughness testing of ceramics, Journal of Testing and Evaluation 2, 1974, 503–509.

    Article  Google Scholar 

  3. H. Hübner, W. Strobl, Anwendbarkeit bruchmechanischer Verfahren auf keramische Werkstoffe, Berichte der Deutschen Keramischen Gesellschaft 54, 1977, 117–125.

    Google Scholar 

  4. R. Warren, B. Johannesson, Creation of stable cracks in hard metals using ‘bridge’ indentation, Powder Metallurgy 27, 1984, 25–29.

    CAS  Google Scholar 

  5. S. Suresh, L. Ewart, M. Maden, W.S. Slaughter, M. Nguyen, Fracture toughness measurements in ceramics: pre — cracking in cyclic compression, Journal of Materials Science 22, 1987, 1271–1276.

    Article  CAS  Google Scholar 

  6. E.A. Almond, B. Roebuck, Precracking of fracture-toughness specimens of hardmetals by wedge indentation, Metals Technology 1978, 92–99.

    Google Scholar 

  7. E.R. Fuller, An evaluation of double — torsion testing — Analysis, Fracture Mechanics Applied to Brittle Materials ASTM STP 678, 1979, 3–18.

    Article  Google Scholar 

  8. L.M. Barker, A simplified method for measuring plane strain fracture toughness, Engineering Fracture Mechanics 9, 1977, 361–360.

    Article  Google Scholar 

  9. J.L. Shannon, D. Munz, Specimen size and geometry effects on fracture toughness of aluminium oxide measured with short-rod and short-bar Chevron-notched specimens, Chevron-Notched Specimens: Testing and Analysis, ASTM STP 855, 1984, 270–280.

    Google Scholar 

  10. P. Ostojic, R. Mc Pherson, A review of indentation fracture theory: its development, principles and limitations, International Journal of Fracture 33, 1987, 297–312.

    Article  Google Scholar 

  11. B.R. Lawn, M.V. Swain, Microfracture beneath point indentation in brittle solids, Journal of Materials Science 10, 1975, 113–122.

    Article  CAS  Google Scholar 

  12. A.G. Evans, E.A. Charles, Fracture toughness determinations by indentation, Journal of the American Ceramic Society 59, 1976, 371–372.

    Article  CAS  Google Scholar 

  13. K. Niihara, R. Morena, D.P.H. Hasselman, Evaluation of KIc of brittle solids by the indentation method with low crack-to-indent ratios, Journal of Materials Science Letters 1, 1982, 13–16.

    Article  CAS  Google Scholar 

  14. G.R. Anstis, P. Chantikul, B.R. Lawn, D.B. Marshall, A critical evaluation of indentation techniques for measuring fracture toughness: I, Direct crack measurements, Journal of the American Ceramic Society 64, 1981, 533–538.

    Article  CAS  Google Scholar 

  15. B.R. Lawn, A.G. Evans, D.B Marshall, Elastic /plastic indentation damage in ceramics: The median /radial crack system, Journal of the American Ceramic Society 63, 1980, 574–581.

    Article  CAS  Google Scholar 

  16. J.G.P. Binner, R. Stevens, The measurement of toughness by indentation, British Ceramic 83, 1984, 168–172.

    Google Scholar 

  17. P. Chantikul, G.R. Anstis, B.R. Lawn, D. B. Marshall, A critical evaluation of indentation techniques for measuring fracture toughness, II: Strength method, Journal of the American Ceramic Society 64, 1981, 539–543.

    Article  CAS  Google Scholar 

  18. D. Munz, Effect of specimen type on the measured values of fracture toughness of brittle ceramics, Fracture Mechanics of Ceramics Vol. 6, Plenum Publishing Corporation 1983, 1–26.

    Google Scholar 

  19. N. Claussen, J. Jahn, Umwandlungsverhalten von Zr02-Teilchen in einer keramischen Matrix, Berichte der Deutschen Keramischen Gesellschaft 55, 1978, 487–491.

    CAS  Google Scholar 

  20. H. Hübner, W. Jillek: Subcritical crack extension and crack resistance in polycrystalline alumina, Journal of Materials Science 12, 1977, 117–125.

    Article  Google Scholar 

  21. R. Knehans, R. Steinbrech, Memory effect of crack resistance during slow crack growth in notched Al2O3 bend specimens, Journal of Materials Science Letters 1, 1982, 327–329.

    Article  CAS  Google Scholar 

  22. M.V. Swain, L. R. F. Rose, Strength limitations of transformation-toughened zirconia alloys, Journal of the American Ceramic Society 69, 1986, 511–518.

    Article  CAS  Google Scholar 

  23. D.B. Marshall, Strength characteristics of transformation-toughened zirconia, Journal of the American Ceramic Society 69, 1986, 173–180.

    Article  CAS  Google Scholar 

  24. G. Ziegler, D. Munz, Bruchwiderstandsmessungen an Al2O3 und Si3N4 mit der Knoop-Härteeindruck-Technik, Bericht der Deutschen Keramischen Gesellschaft 56, 1979, 128–131.

    CAS  Google Scholar 

  25. D. Munz, G. Himsolt, J. Eschweiler, Effect of stable crack growth on fracture toughness determination for hot-pressed silicon nitride at elevated temperatures, Fracture Mechanics Methods for Ceramics, Rocks, and Concrete, ASTM STP 745, 1981, 69–84.

    Google Scholar 

  26. G. Himsolt, T. Fett, K. Keller, D. Munz, Fracture toughness measurements on silicon carbide, Materialwissenschaft und Werkstofftechnik 20, 1989.

    Google Scholar 

  27. A.G. Evans, E.R. Fuller, Crack propagation in ceramic materials under cyclic loading conditions, Metallurgical Transactions 5, 1974, 27–33.

    Google Scholar 

  28. T. Kawakubo, Static and cyclic fatigue in ceramics, Interner Bericht der Toshiba Corporation.

    Google Scholar 

  29. T. Fett, G. Himsolt, D. Munz, Cyclic fatigue of hot-pressed Si3N4 at high temperatures, Advanced Ceramic Materials 1, 1986, 179–84.

    CAS  Google Scholar 

  30. A.G. Evans, A method for evaluating the time-dependent failure characteristics of brittle materials-and its application to polycrystalline alumina, Journal of Materials Science 7, 1972, 1137–1146.

    Article  CAS  Google Scholar 

  31. P. Fournier, F. Naudin, Essai de KIc et determination du diagramme (KI, v) du verre par la methode de la double torsion, Rev. Phys. Appl. 12, 1977, 797–802.

    Article  CAS  Google Scholar 

  32. T.E. Adams, D.J. Landini, C.A. Schumacher, R.C. Bradt, Micro — and macrocrack growth in alumina refractories, Ceramic Bulletin 60, 1981, 730–735.

    CAS  Google Scholar 

  33. S.W. Freiman, D.R. Murville, P.W. Mast, Crack propagation studies in brittle materials, Journal of Materials Science 8, 1973, 1527–1533.

    Article  CAS  Google Scholar 

  34. S.M. Wiederhorn, H. Johnson, A.M. Diness, A.H. Heuer, Fracture of glass in vacuum, Journal of the American Ceramic Society 57, 1974, 336–341.

    Article  CAS  Google Scholar 

  35. R.J. Charles, Dynamic fatigue of glass, Journal of Applied Physics 29, 1958, 1657–1661.

    Article  CAS  Google Scholar 

  36. T. Fett, Lebensdauervorhersage an keramischen Werkstoffen mit den Methoden der Bruchmechanik bei elastischem und viskoelastischem Materialverhalten, DFVLR-Forschungsbericht FB83 – 09, Köln, 1983.

    Google Scholar 

  37. K. Keller, Theoretische und experimentelle Untersuchungen zur Thermoermüdung keramischer Werkstoffe, Dissertation Universität Karlsruhe, 1989.

    Google Scholar 

  38. F. Fett, D. Munz, Determination of v — KI — curves by a modified evaluation of lifetime measurements in static bending tests, Communication of the American Ceramic Society 68, 1985, C213–C215.

    Google Scholar 

  39. S.W. Freiman, D.R. Mulville, P.W. Mast, Crack propagation studies in brittle materials, Journal of Materials Science 8, 1973, 1527–1533.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Munz, D., Fett, T. (1989). Bruchmechanik. In: Mechanisches Verhalten keramischer Werkstoffe. Werkstoff-Forschung und -Technik, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-51710-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-51710-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51508-1

  • Online ISBN: 978-3-642-51710-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics