Skip to main content

Stochastic Linear Programming Models

  • Chapter

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 274))

Abstract

Linear programming has proven to be a suitable framework for the quantitative analysis of many decision problems. The reasons for its popularity are obvious: many practical problems can be modeled, at least approximately, as linear programs, and powerful software is available. Nevertheless, even if the problem has the necessary linear structure it is not sure that the linear programming approach works. One of the reasons is that the model builder must be able to provide numerical values for each of the coefficients. But in practical situations one often is not sure about the “true” values of all coefficients. Usually the uncertainty is exorcized by taking reasonable guesses or maybe by making careful estimates. In combination with a sensitivity analysis with respect to the most inaccurate coefficients this approach is satisfactory in many cases. However, if it appears that the optimal solution depends heavily on the value of some inaccurate data, it might be sensible to take the uncertainty of the coefficients into consideration in a more fundamental way. Since an evident framework for the quantitative analysis of uncertainty is provided by probability theory it seems only natural to interpret the uncertain coefficient values as realizations of random variables. This approach characterizes stochastic linear programming.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.M.L. Beale (1955). On minimizing a convex function subject to linear inequalities. J. Roy. Statist. Soc. Ser. B 17, 173–184.

    Google Scholar 

  2. D.P. Bertsekas, S.E. Shreve (1978). Stochastic Optimal Control: the discrete-Time Case, Academic Press, New York-San Francisco-London.

    Google Scholar 

  3. A. Charnes, W.W. Cooper (1959). Chance-constrained programming. Management Sci. 6, 73–79.

    Article  Google Scholar 

  4. G.B. Dantzig (1955). Linear programming under uncertainty. Management Sci. 1, 197–206.

    Article  Google Scholar 

  5. G.B. Dantzig (1963). Linear Programming and Extensions, Princeton University Press, Princeton NJ.

    Google Scholar 

  6. M.A.H. Dempster (1980). Introduction to stochastic programming. M.A.H. Dempster (ed.). Stochastic Programming, Academic Press, New York-San Francisco-London, 3–59.

    Google Scholar 

  7. J. Dupaçova (1980). Water resources system modelling using stochastic programming with recourse. P. Kall, A. Prekopa (eds.). Recent Results in Stochastic Programming. Lecture notes in economics and mathematical systems 179, Springer, Berlin-Heidelberg-New York, 121–133.

    Chapter  Google Scholar 

  8. M.J. Eisner, P. Olsen (1975). Duality for stochastic programming interpreted as L.P. in Lp-space. SIAM J. Appl. Math. 28, 779–792.

    Article  Google Scholar 

  9. P.C. Fishburn (1970). Utility Theory for Decision Making, Wiley, New York.

    Google Scholar 

  10. S.J. Garstka (1980). The economic equivalence of several stochastic programming models. M.A.H. Dempster (ed.). Stochastic Programming, Academic Press, New York-San Francisco-London, 83–91.

    Google Scholar 

  11. K. Hinderer (1970). Foundations of Nonstationary Dynamic Programming with Discrete Time Parameter. Lecture notes in operations research and mathematical systems 33, Springer, Berlin-Heidelberg-New York.

    Book  Google Scholar 

  12. A.J. Hogan, J.G. Morris, H.E. Thompson (1981). Decision problems under risk and chance-constrained programming: Dilemmas in the transition. Management Sci. 27, 698–716.

    Article  Google Scholar 

  13. C.A. Holloway (1979). Decision Making under Uncertainty; Models and Choices, Prentice-Hall, Englewood Cliffs NJ.

    Google Scholar 

  14. P. Kall (1976). Stochastic Linear Programming, Springer, Berlin-Heidelberg-New York.

    Book  Google Scholar 

  15. J.G. Kallberg, R.W. White, W.T. Ziemba (1982). Short term financial planning under uncertainty. Management Sci. 28, 670–682.

    Article  Google Scholar 

  16. M.I. Kusy, W.T. Ziemba (1983). A Bank Asset and Liability Management Model, Collaborative paper CP-83–59, IIASA, Laxenburg.

    Google Scholar 

  17. H.M. Markowitz (1959). Portfolio Selection, Wiley, Ney York.

    Google Scholar 

  18. J. von Neumann, O. Morgenstern (1947). Theory of Games and Economic Behaviour, Princeton University Press, Princeton NJ.

    Google Scholar 

  19. P. OLSEN (1976). Multistage stochastic programming with recourse: the equivalent deterministic problem. SIAM J. Control 14, 495–517.

    Article  Google Scholar 

  20. P. OLSEN (1976). When is a multistage stochastic programming problem well-defined? SIAM J. Control 14, 518–527.

    Article  Google Scholar 

  21. P. OLSEN (1976). Multistage stochastic programming problems with recourse as mathematical programming in an Lp-space. SIAM J. Control 14, 528–537.

    Article  Google Scholar 

  22. J.W. PRATT (1964). Risk aversion in the small and in the large. Econometrica 32, 122–136.

    Article  Google Scholar 

  23. A. PREKOPA (1973). Contributions to the theory of stochastic programming. Math. Programming 4, 202–221.

    Article  Google Scholar 

  24. A. PREKOPA (1980). Logarithmic concave measures and related topics. M.A.H. DEMPSTER (ed.). Stochastic Programming, Academic Press, New York-San Francisco-London, 63–82.

    Google Scholar 

  25. H. RAIFFA (1968). Decision Analysis; Introductory Lectures on Choices under Uncertainty, Addison-Wesley, Reading Mass.

    Google Scholar 

  26. R.T. ROCKAFELLAR, R.J.-B. WETS (1974). Continuous versus measurable recourse in N-stage stochastic programming. J. Math. Anal. Appl. , 48, 836–859.

    Article  Google Scholar 

  27. R.T. ROCKAFELLAR, R.J.-B. WETS (1977). Measures as Lagrange multipliers in multistage stochastic programming. J. Math. Anal. Appl. 60, 301–313.

    Article  Google Scholar 

  28. R.T. ROCKAFELLAR, R.J.-B. WETS (1978). The optimal recourse problem in discrete time: L1-multipliers for inequality constraints. SIAM J. Control 16, 16–36.

    Article  Google Scholar 

  29. L.J. SAVAGE (1954). The Foundations of Statistics, Wiley, New York.

    Google Scholar 

  30. H. SCHNEEWEISS (1967). Entscheidungskriterien bei Risico, Springer, Berlin-Heidelberg-New York.

    Book  Google Scholar 

  31. C. SCHWEIGMAN (1985). Operations Research Problems in Agriculture in Developing Countries, to be published.

    Google Scholar 

  32. D. WALKUP, R.J.-B. WETS (1967). Stochastic programs with recourse. SIAM J. Appl. Math. 15, 1299–1314.

    Article  Google Scholar 

  33. J. WESSELS (1967). Stochastic programming. Statist. Neerlandica 21, 39–53.

    Article  Google Scholar 

  34. R.J.-B. WETS (1966). Programming under uncertainty: the complete problem. Z. Wahrsch. Verw. Gebiete 4, 316–339.

    Article  Google Scholar 

  35. R.J.-B. WETS (1970). Problèmes duaux en programmation stochastique. C.R. Acad. Sci. Ser. A-B 270, A47–A50.

    Google Scholar 

  36. R.J.-B. WETS (1972). Stochastic programs with recourse: a basic theorem for multistage problems. Z. Wahrsch. Verw. Gebiete 21, 201–206.

    Article  Google Scholar 

  37. R.J.-B. WETS (1974). Stochastic programs with fixed recourse: the equivalent deterministic program. SIAM Rev. 16, 309–339.

    Article  Google Scholar 

  38. R.J.-B. WETS (1983). Stochastic programming: solution techniques and approximation schemes. A. BACHEM, M. GROETSCHEL, B. KORTE (eds.). Mathematical Programming: The State of the ArtBonn 1982, Springer, Berlin-Heidelberg-New York-Tokyo, 566–603.

    Chapter  Google Scholar 

  39. J. ZACKOVA (1966). On minimax solutions of stochastic linear programming problems. Časopis Pěst. Math. 91, 423–429.

    Google Scholar 

  40. Numerical methods in stochastic programming, IIASA, Laxenburg; to be published.

    Google Scholar 

  41. Bibliography of stochastic programming; to be contained in [40],

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klein Haneveld, W.K. (1986). Stochastic Linear Programming Models. In: Duality in Stochastic Linear and Dynamic Programming. Lecture Notes in Economics and Mathematical Systems, vol 274. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-51697-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-51697-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16793-8

  • Online ISBN: 978-3-642-51697-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics