Skip to main content

Application of Mathematical Models in the Membrane Electrophysiology of Macrophages

  • Conference paper
  • 168 Accesses

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 65))

Abstract

In most cells there is a transmembrane potential difference, called a resting membrane potential (about -70 mV) arising from the unequal distributions of ions across the cell membrane and the selective permeability of the cell membrane for the various ion species. In nerve and muscle cells a sudden change in the ionic permeability of the membrane causes a rapid all-or-nothing change in membrane potential called an action potential. In nerve cells the action potential forms the basic information-carrying signal and in muscles cells it evokes cell contraction (27).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldritch RW, Yellen, G. Nonstationary channel kinectics.1983. In: Single-Channel Recording, eds. B. Sakmann and E. Neher, publ. Plenum Press, New York, pp pp287–299.

    Google Scholar 

  2. Cameron, AR, Nelson, J, Forman, HJ. 1983. Depolarization and increased conductance precede superoxide release by concanavalin A-stimulated rat alveolar macrophages. Proc. Natl. Acad. Sci. USA. 80:3726–3728.

    Article  Google Scholar 

  3. Colquhoun, D, Hawkes, AG. 1983. The principles of the stochastic interpretation of ion-channel mechanisms. In: Single-Channel Recording, eds. B.Sakmann and E. Neher, publ. Plenum Press, New York, pp 135–177.

    Chapter  Google Scholar 

  4. Colquhoun, D, Sackmann, B. 1983. Bursts of openings in transmittor-activated ion channels. In: Single-Channel Recording, eds. B.Sakmann and E. Neher, publ. Plenum Press, New York, pp 345–364.

    Chapter  Google Scholar 

  5. DeCoursey, TE, Chandy, KG, Gupta, S, Cahalan, MD. 1984. Voltage-gated K+ channels in human T lymphocytes: a role in mitogenesis. Nature 307:465–468.

    Article  Google Scholar 

  6. Donovon, JJ, Simon, MI, Draper, RK, Montai, M. 1981. Diptheria toxin forms transmembrane channels in planer lipid bilayer. Proc. Natl. Acad. Sci., USA. 78:172–176.

    Article  Google Scholar 

  7. Dos Reis, GA, Oliveira-Castro, GM. 1977. Electrophysiology of phagocytic membranes I. Potassium-dependent slow membrane hyperpolarizations in mice macrophages. Biochim. Biophy. Acta. 469:257–263.

    Article  Google Scholar 

  8. Fukushima, Y, Hagiwara, S.1985. Currents carried by monovalent cations through calcium channels in mouse neoplastic B lymphocytes. J. Physiol. 358:255–284.

    Google Scholar 

  9. Gallin, EK. 1984. Electrophysiological properties of macrophages. Fed. Proc. 43:2385.

    Google Scholar 

  10. Gallin, EK. 1984. Calcium and voltage-activated potassium channels in human macrophages. Biophy.J. 46:821–827.

    Article  Google Scholar 

  11. Gallin, EK, Gallin JI. 1977. Interaction of chemotactic factors with human macrophages: Induction of transmembrane potentials. J.Cell Biol. 75:277–289.

    Article  Google Scholar 

  12. Gallin, EK, Wiederhold, ML, Lipsky, PE, Rosenthal, AS. 1975. Spontaneous and induced membrane potential hyperpolarizations in macrophages. J. Cell. Physiol. 86:653–661.

    Article  Google Scholar 

  13. Goldman, DE. 1943. Potential impedance and rectification in membranes. J. Gen. Physiol. 27,37–60.

    Article  Google Scholar 

  14. Hamill, OP, Marty, A, Neher, E, Sakmann, B, Sigworth FJ. 1981. Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391:85–100.

    Article  Google Scholar 

  15. Hodgkin, AL, Huxley AF. 1952. A quantative description of the membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond). 117:500–544.

    Google Scholar 

  16. Hodgkin, AL, Katz, B. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. 108:37–77.

    Google Scholar 

  17. Horn, R, Lange, K. 1983. Estimating kinectic constants from single channel data. Biophy. J. 43:207–223.

    Article  Google Scholar 

  18. Ince, C. 1985. Introduction to the electrophysiology of mononuclear phagocytes. In: Mononuclear phagocytes. Characteristics, Physiology and Function, ed. R. Van Furth), Martinus Nijhoff Publishers, Boston, Dordrecht, Lancaster.Chap.38, pp 361–368.

    Chapter  Google Scholar 

  19. Ince, C, Leijh, PCJ, Meijer, J, Van Bavel, E, Ypey, DL. 1984. Oscillatory hyperpolarizations and resting membrane potentials of mouse fibroblast and macrophage cell lines. J. Physiol. 352:625–635.

    Google Scholar 

  20. Ince, C, Leijh, PCJ, Thio, B, Van Duijn, B, Ypey, DL. 1985. Identification of a Na/K pump in cultured human monocytes. J. Physiol. (in press).

    Google Scholar 

  21. Ince, C, Thio, B, Van Duijn, B, Van Dissel J.T., Ipey, DL, Leijh, PCJ. 1985. Intracellular concentrations of K+, Na+ and Cl- and the ionic basis of the resting membrane potential in human monocytes. (submitted).

    Google Scholar 

  22. Ince, C, Van Dissel, J, Diesselhoff, MMC. 1985. A teflon culture dish for high magnification observations and measurements from single cells. Pflugers Arch. 403:240–244.

    Article  Google Scholar 

  23. Ince, C, Van Duijn, B, Ypey, DL, Leijh, PCJ (1984). A small conductance K+ -channel in cultured human monocytes. In: Book of Abstracts 8th International Biophysics Congress, Abstr.

    Google Scholar 

  24. Ince, C, Ypey, DL. 1985. Membrane hyperpolarizations and ionic channels in cultured human monocytes. In: Mononuclear phagocytes. Characteristics, Physiology and Function,ed. R.Van Furth, Martinus Nijhoff Publishers, Boston, Dordrecht, Lancaster.Chap. 39, pp 369–337.

    Chapter  Google Scholar 

  25. Ince, C, Ypey, DL, Van Furth, R, Verveen, AA. 1983. Estimation of the membrane potential of cultured macrophages from the fast potential transient upon microelectrode entry. J. Cell Biol. 96:796–801.

    Article  Google Scholar 

  26. Kouri, J, Noa, M, Diaz, B, Niubo, E. 1980. Hyperpolarisation of rat peritoneal macrophages phagocytosing latex particles. Nature 283:868–69.

    Article  Google Scholar 

  27. Kuffler, SW, Nicholls, JG. 1977. From Neuron to Brain, Pub. Sinaur Associates, Inc., Sunderland, Mass.

    Google Scholar 

  28. Lassen, UV, Nielsen, AMT, Pape, L, Simonsen, LO. 1971. The membrane potential of Ehrlich ascites tumor cells. Microelectrode measurements and their critical evaluation. J. Membrane Biol. 6:269–288.

    Article  Google Scholar 

  29. Lauger, P. 1983. Conformational changes of ionic channels. In: Single-Channel Recording, eds. B.Sakmann and E. Neher, publ. Plenum Press, New York, pp 177–189.

    Chapter  Google Scholar 

  30. Leijh, PCJ, van den Barselaar, M, van Zwet, TL, Daha, MR, van Furth, R. 1979. Requirement of extracellular complement and immunoglobulin for intracellular killing of micro-organisms by human monocytes. J. Clin. Invest. 63:772–784.

    Article  Google Scholar 

  31. Lux, Neher, E, Marty, A. 1981. Single channel activity associated with the calcium dependent outward current inHelix Pomatia. Pflugers Archiv, 389:293–295.

    Article  Google Scholar 

  32. Lynch, EC, Blake, MS, Gotschlich, Mauro, A. 1984. Spontaneously transferred from whole cells and reconstituted from puroified proteins of Neisseria gonorrhoeae and Neisseria meningitidis. Biophys. J. 45:104–107.

    Google Scholar 

  33. MacCann, FV, Cole, JJ, Guyre, PM, Russel, JAG. 1983. Action potentials in macrophages derived from human monocytes. Science 199:991–993.

    Article  Google Scholar 

  34. Maruyama, Y, Peterson, OH, Flanagan,P,Pearson,GT. 1983. Quantification of Ca2+-activated K+ channels under hormonal control in pancreas acinar cells. Nature 305:228–232.

    Article  Google Scholar 

  35. Matteson, DR, Deutsch, C. 1984. K channels in T lymphocytes: a patch clamp study using monoclonal antibody adhesion. Nature 307:468–471.

    Article  Google Scholar 

  36. Neher, E, Sackmann, B. 1976. Single channel currents recorded from membrane of denervated frog muscle fibres. Nature (Lond.) 260:799–802.

    Article  Google Scholar 

  37. Oliveira-Castro, GM. 1983. Ca2+-sensative K+ channels in phagocytic cell membranes.Cell Calcium 4:475–492.

    Article  Google Scholar 

  38. Persechini, PM, Araujo, EG, Oliveira-Castro, GM. 1981. Electrophysiology of phagocytic membranes: induction of slow hyperpolarizations in macrophages and macrophage polykaryons by intracellular calcium injection. J.Membrane Biol. 81–90.

    Google Scholar 

  39. Sakmann, B, Neher, E. (eds). 1983. Single-Channel Recording, Publishers. Plenum Press, New York.

    Google Scholar 

  40. Van Furth, R (ed). 1985. Mononuclear Phagocytes: Characteristics, Physiology and Function. Publishers: Martinus Nijhoff Publ., Boston, Dordrecht, Lancester.

    Google Scholar 

  41. Van Furth, R, Cohn, ZA, Hirsch, JG, Humphrey, JH, Spector, WG, Langevoort. 1972. The mononuclear phagocyte system. a new classification of macrophages, monocytes and their precursor cells. Bull WHO 46:845.

    Google Scholar 

  42. Verveen, AA, DeFelice, LJ. 1974. Membrane noise. In: Progress in Biophysics and Molecular Biology. 28:189–265.

    Google Scholar 

  43. Young, JDE, Unkeless, JC, Young, TM, Mauro, A, Cohn, ZA 1983. Role for a mouse IgGFc receptor as a ligand-dependent ion channel. Nature 306:186–189.

    Article  Google Scholar 

  44. Ypey, DL, Clapham, DE. 1983. Development of a delayed outward-rectifying K+ conductance in cultured mouse peritoneal macrophages. Proc.Natl.Acad.Sci. 81:3083–3087.

    Article  Google Scholar 

  45. Ypey, DL, Clapham, DE, Ince, C. 1985. Potassium channels and conductance in cultured mouse peritoneal macrophages. In: Mononuclear phagocytes. Characteristics, Physiology and Function, ed. R. Van Furth, Martinus Nijhoff Publishers, Boston

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ince, C. (1986). Application of Mathematical Models in the Membrane Electrophysiology of Macrophages. In: Hoffmann, G.W., Hraba, T. (eds) Immunology and Epidemiology. Lecture Notes in Biomathematics, vol 65. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-51691-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-51691-7_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16431-9

  • Online ISBN: 978-3-642-51691-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics