Skip to main content

Newton’s Method Based on Generalized Derivatives for Nonsmooth Functions: Convergence Analysis

  • Conference paper
Book cover Advances in Optimization

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 382))

Abstract

This paper presents sufficient and necessary conditions for the convergence of Newton’s method based on generalized derivatives. These conditions require uniform injectivity of the derivatives as well as uniform high-order approximation of the original locally Lipschitz function along rays through the solution. Our approach permits to determine approximate solutions of the Newton subproblems and to use such concepts of derivatives for nonsmooth functions, multivalued or not, as directional and B-derivatives, contingent derivatives, generalized Jacobians and others. Furthermore, we ensure solvability of the subproblems via surjecivi-ty of the derivatives and verify a Kantorovich-type convergence theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aubin, J.P. Differential Calculus of set-valued maps. an update. Working Paper WP-87–93, (1987) IIASA, Laxenburg Austria

    Google Scholar 

  2. Aubin, J.P. & Ekeland, I. Applied Nonlinear Analysis. Wiley, New York, 1984

    Google Scholar 

  3. Aubin, J.P. & Frankowska, H. Set-valued Analysis. Birkhaüser, Basel, 1990

    Google Scholar 

  4. Aze, D. An inversion theorem for set-valued maps. Bull. Austral. Math. Soc. 37 (1988) pp. 411–414

    Article  Google Scholar 

  5. Clarke, F.H. On the inverse function theorem. Pacific Journ. Math. 64, No. 1 (1976) pp. 97–102

    Article  Google Scholar 

  6. Clarke, F.H. Optimization and Nonsmooth Analysis. Wiley, New York, 1983

    Google Scholar 

  7. Ekeland, I. On the variational principle. J. Math. Analysis & Appl. 47, No.2 (1974) pp. 324–353

    Article  Google Scholar 

  8. Haraux, A. How to differentiate the projection on a convex set in Hilbert space. Some applications to variational inequalities. Journ. Math. Soc. Japan 29, (1977) pp. 615–631

    Article  Google Scholar 

  9. Harker, P.T. & Pang, J.-S. Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications. Mathematical Programming 48, (1990) pp. 161–220

    Article  Google Scholar 

  10. Ioffe, A.D. Nonsmooth analysis: Differential calculus of nondifferentiable mappings. Trans. Amer. Math. Soc. 266, (1981) pp. 1–56

    Article  Google Scholar 

  11. Ioffe, A.D. Global surjection and global inverse mapping theorems in Banach spaces. Ann. NewYork Acad.Sci. 491, (1987) pp. 181–189

    Article  Google Scholar 

  12. Jittorntrum, K. Solution point differentiability without strict complementarity in nonlinear programming. Math. Programming Study 21, (1984) pp. 127–138

    Article  Google Scholar 

  13. Jongen, H.Th., Klatte, D., Tammer, K. Implicit functions and sensitivity of stationary points. Mathematical Programming 49 (1990) pp. 123–138

    Article  Google Scholar 

  14. Kojima, M. Strongly stable stationary solutions in nonlinear programs. In: Analysis and Computation of Fixed Points, S.M. Robinson ed., Academic Press, New York, 1980 pp. 93–138

    Google Scholar 

  15. Kojima, M. & Shindo, S. Extensions of Newton and quasi-Newton methods to systems of PC equations. Journ. of Operations Research Soc. of Japan 29 (1987) pp. 352–374

    Google Scholar 

  16. Kummer, B. Newton’s method for non-differentiable functions. In: Advances in Math. Optimization, J.Guddat et al. eds. Akademie Verlag Berlin, Ser. Mathem. Res. Vol. 45, 1988 pp. 114–125

    Google Scholar 

  17. Kummer, B. An implicit function theorem for C 0,1 -equations and parametric C 1,1 -optimization. Journ. Math. Analysis & Appl. (1991) Vol. 158, No.1, pp. 35–46

    Article  Google Scholar 

  18. Kummer, B. Lipschitzian inverse functions, directional derivatives and application in C 1,1 -optimization. Working Paper WP- 89–084 (1989) IIASA Laxenburg, Austria

    Google Scholar 

  19. Langenbach, A. Über lipschitzstetige implizite Funktionen. Zeitschr.für Analysis und ihre Anwendungen Bd. 8 (3), (1989) pp. 289–292

    Google Scholar 

  20. Langenbach, A. Bemerkungen zur Theorie der lokal bzw. global invertierbaren R m -Abbildungen. Math.Nachr. 148, (1990) pp. 59–63

    Article  Google Scholar 

  21. Ortega J.M. & Rheinboldt W.C. Iterative Solution of Nonlinear Equations of Several Variables. Academic Press, San Diego, 1970

    Google Scholar 

  22. Pang, J.-S. Newton’s method for B-differentiable equations. Math. of Operations Res. 15, (1990) pp. 311–341

    Article  Google Scholar 

  23. Pang, J.-S. & Gabriel, S.A. NE/SQP: A robust algorithm for the nonlinear complementarity problem. Working Paper, (1991), Department of Math. Sc, The Johns Hopkins Univ., Baltimore Maryland 21218

    Google Scholar 

  24. Park, K. Continuation methods for nonlinear programming. Ph.D. Dissertation, (1989), Department of Industrial Engineering, Univ. of Wisconsin-Madison

    Google Scholar 

  25. Qi, L. Convergence analysis of some algorithms for solving nonsmooth equations. Manuscript, (1991), School of Math., The Univ. of New South Wales, Kensington, New South Wales

    Google Scholar 

  26. Ralph, D. Global convergence of damped Newton’s method for nonsmooth equations, via the path search. Techn. Report TR 90–1181, (1990), Department of Computer Sc., Cornell Univ. Ithaca, New York

    Google Scholar 

  27. Robinson, S.M. Newton’s method for a class of nonsmooth functions. Working Paper, (1988), Univ. of Wisconsin-Madison, Department of Industrial Engineering, Madison, WI 53706

    Google Scholar 

  28. Robinson, S.M. An implicit-function theorem for B-differen-tiable functions. Working Paper WP-88–67, (1988), IIASA Laxenburg, Austria

    Google Scholar 

  29. Robinson, S.M. An implicit-function theorem for a class of nonsmooth functions. Mathematics of OR, Vol. 16, No. 2, May (1991), pp. 292–309

    Article  Google Scholar 

  30. Thibault, L. Subdifferentials of compactly Lipschitzian vector-valued functions. Ann. Mat. Pura Appl. (4) 125, (1980) pp. 157–192

    Article  Google Scholar 

  31. Thibault, L. On generalized differentials and subdifferentials of Lipschitz vector-valued functions. Nonlinear Analysis Theory Methods Appl. 6 (10), (1982) pp. 1037–1053

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kummer, B. (1992). Newton’s Method Based on Generalized Derivatives for Nonsmooth Functions: Convergence Analysis. In: Oettli, W., Pallaschke, D. (eds) Advances in Optimization. Lecture Notes in Economics and Mathematical Systems, vol 382. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-51682-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-51682-5_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55446-2

  • Online ISBN: 978-3-642-51682-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics