Skip to main content

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 91))

  • 96 Accesses

Abstract

In chapters II-V we developed the theory of one-stage chemoreception, in which a ligand can only be absorbed by a cell by a direct hit on the binding site of the receptor molecule. In chapter VIII the theory will be extended to incorporate two-stage capture processes in which the ligand is first incorporated in the cell membrane and then diffuses laterally in the plane of the membrane till it hits a binding site. Actually, two-stage chemoreception is only one of a variety of processes which occur at the surface of the living cell and in which the lateral translational - or rotational diffusion of proteins plays an essential role. It is for this reason that the experimental determination of the relevant diffusion coefficients has been pursued vigorously during the last decade [37–44]. Experimental values of the the lateral translational diffusion coefficient (DT’) range from 10-8 to 10-11 cm2 s-1. For the rotational diffusion coefficient (DR’) of proteins embedded in the cell membrane one measures values in the range from 105 to 103 s-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References to chapter VI

  1. R.J. Cherry. Rotational and lateral diffusion of membrane proteins. Biochim. Biophys. Acta 559 (1979) 289–327.

    Article  Google Scholar 

  2. M. Shinitzky and P. Henkart. Fluidity of cell membranes - current concepts and trends. Int. Rev. Cytol. 60 (1979) 121–147.

    Article  Google Scholar 

  3. M.M. Poo, J.W. Lam, N. Orida and A.W. Chao. Electrophoresis and diffusion in the plane of the cell membrane. Biophys. J. 26 (1979) 1–22.

    Article  Google Scholar 

  4. D.E. Golan and W. Veatch. Lateral mobility of band 3 proteins in the human erythrocyte membrane studied by fluorescence photobleaching recovery. Proc. Natl. Acad. Sci. USA 77 (1980) 2537–2541.

    Article  Google Scholar 

  5. B.A. Smith, W.R. Clark and H.M. McConnell. Anisotropic molecular motion on cell surfaces. Proc. Natl. Acad. Sci. USA 76 (1979) 5641–5644.

    Article  Google Scholar 

  6. M. Edidin, T. Wei and S. Holmberg. The role of membrane potential in determining rates of lateral diffusion in the plasma membrane of mammalian cells. Ann. N.Y. Acad. Sci. 339 (1980) 1–7.

    Article  Google Scholar 

  7. M.P. Scheetz, M. Schindler and D.E. Koppel. Lateral mobility of integral membrane proteins is increased in spherocytic erythrocytes. Nature 285 (1980) 510–512.

    Article  Google Scholar 

  8. W.L.C. Vaz, K. Jacobson, E.S. Wu and Z. Derzko. Lateral mobility of an amphipathic apolipoprotein, Apo-C-111, bound to phosphatidylcholine bilayers with and without cholesterol. Proc. Natl. Acad. Sci. USA 76 (1979) 5645–5649.

    Article  Google Scholar 

  9. P.G. Saffman and M. Delbrück. Brownian motion in biological membranes. Proc. Natl. Acad. Sci. USA 73 (1975) 3111–3113.

    Article  Google Scholar 

  10. P.G. Saffman. Brownian motion in thin sheets of viscous fluid. J. Fluid Mech. 73 (1976) 593–602.

    Article  MathSciNet  MATH  Google Scholar 

  11. B.D. Hughes, B.A. Pailthorpe and L.R. White. The translational and rotational drag on a cylinder moving in a membrane. J. Fluid Mech. 110 (1981) 349–372.

    Article  MathSciNet  MATH  Google Scholar 

  12. B.D. Hughes. Ph.D. Thesis, Australian National University, 1980, unpublished.

    Google Scholar 

  13. F.W. Wiegel. Rotational friction coefficient of a permeable cylinder in a viscous fluid. Phys. Lett. 70A (1979) 112–113.

    MathSciNet  Google Scholar 

  14. F.W. Wiegel. Translational friction coefficient of a permeable cylinder in a sheet of viscous fluid. J. Phys. A12 (1979) 2385–2392.

    MathSciNet  Google Scholar 

  15. J.R. Heringa, F.W. Wiegel and F.P.H. van Beckum. Friction coefficient of a disk in a sheet of viscous fluid: numerical calculation. Physica 108A (1981) 598–604.

    Google Scholar 

  16. F.W. Wiegel. Ref. I-10, pg. 135–150.

    Google Scholar 

  17. M. Buas. A theoretical study of membrane diffusion and lymphocyte patching. Ph.D. Thesis, University of Maryland, 1977, unpublished.

    Google Scholar 

  18. F.W. Wiegel and J.R. Heringa. Diffusion coefficient of a protein in a fluid membrane: numerical calculation. Can. J. Phys. 63 (1985) 44–45.

    Article  Google Scholar 

  19. G.I. Bell and A.S. Perelson. Workshop on physical aspects of cellular recognition and response. Aspen Center for Physics. Unpublished report, T-10 Division, Los Alamos National Laboratory, 1981.

    Google Scholar 

  20. M. Bloom. Squishy proteins in fluid membranes. Can. J. Phys. 57 (1979) 2227–2230.

    Article  Google Scholar 

  21. E.L. Elson and J.A. Reidler. Analysis of cell surface interactions by measurements of lateral mobility. J. Supramol. Struct. 6 (1979) 215–228.

    Google Scholar 

  22. J.C. Owicki and H.M. McConnell. Lateral diffusion in inhomogeneous membranes: model membranes containing cholesterol. Biophys. J. 30 (1980) 383–398.

    Article  Google Scholar 

  23. B.A. Smith, W.R. Clark and H.M. McConnell. Anisotropic molecular motion on cell surfaces. Proc. Natl. Acad. Sci. USA 76 (1979) 5641–5644.

    Article  Google Scholar 

  24. A.M. Dykhne. Conductivity of a two-dimensional two-phase system. Zh. Eksp. Teor. Fiz. 59 (1970) 110–115;

    Google Scholar 

  25. A.M. Dykhne. Sov. Phys. JETP 32 (1970) 63–65.

    Google Scholar 

  26. M.W.M. Willemse and W.J. Caspers. Electrical conductivity of polycrystalline materials. J. Math. Phys. 20 (1979) 1824–1831.

    Article  Google Scholar 

  27. M.S. Bretcher. Endocytosis: relation to capping and cell locomotion. Science 224 (1984) 681–686.

    Article  Google Scholar 

  28. F.W. Wiegel. Hydrodynamics of a permeable patch in the fluid membrane. J. Theor. Biol. 77 (1979) 189–193.

    Article  Google Scholar 

  29. B. Goldstein, C. Wofsy and H. Echavarria-Heras. The effect of membrane flow on the capture of receptors by coated pits. Biophys. J. 53 (1988) 405–414.

    Article  Google Scholar 

  30. B. Goldstein and F.W. Wiegel. The distribution of cell surface proteins on spreading cells: comparison of theory with experiment. Biophys. J. 53 (1988) 175–184.

    Article  Google Scholar 

  31. F.W. Wiegel and B. Goldstein. Cap formation by proteins on the cell membrane: excluded volume effects. Mod. Phys. Lett. B2 (1988) 857–859.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wiegel, F.W. (1991). Diffusion and Flow in the Cell. In: Physical Principles in Chemoreception. Lecture Notes in Biomathematics, vol 91. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-51673-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-51673-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54319-0

  • Online ISBN: 978-3-642-51673-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics