Skip to main content

Periodic Contraction Waves in Cytoplasmic Extracts

  • Chapter
Biological Motion

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 89))

Abstract

The motility of most eucaryotic cells is based on constitution and contraction of an actomyosin network. In some in—vitro experiments numerous consecutive waves of gel assembly and gel contraction have been observed when cell free cytoplasmic extracts were incubated. The corresponding model considers the cytoplasmic matrix (F—actin, myosin, G—actin, ATP,….) as a highly viscous two component mixture. The components are the solution and the interpenetrating fibroid network phase. Application of mass and momentum conservation laws of fluid mechanics to both components leads to a system of partial differential equations of hyperbolic—elliptic type. The presented numerical solutions of these equations reflect the experimentally observed autonomous recurrent contraction waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alt W. (1985) Contraction and oscillation in a simple model for cell plasma motion. In: L. Rensing and W. J. Jaeger (ed.) Temporal Order: 163–174. Springer Verlag, Berlin

    Google Scholar 

  • Alt W. (1986) Mathematical models in actin—myosin interaction. In: K. E. Wohlfarth-Bottermann (ed.) Nature and function of cytoskeletal proteins in motility and transport: 219–230. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Alt W. (1988) Models of cytoplasmic motion. In: M. Markus, S.C. Müller and G. Nicholis (ed.) From chemical to biological organization: 235–247. Springer Verlag, Berlin

    Chapter  Google Scholar 

  • Bereiter—Hahn J. (1987) Mechanical principles of architecture of eucaryotic cells. In: J. Bereiter—Hahn, O.R. Anderson and W.E. Reif (ed.) Cytomechanics —the mechanical basis of cell form and structure—: 3–30. Springer Verlag, Berlin

    Google Scholar 

  • Dembo M., Harlow F.H. and Alt W. (1984) The biophysics of cell surface motility. In: A.S. Perelson, C. Delisi and F.W. Wiegel (ed.) Cell surface dynamics —concepts and models—: 495–542. Marcel Dekker, Inc., New York

    Google Scholar 

  • Dembo M. and Harlow F. (1986) Cell motion, contractile networks, and the physics of interpenetrating reactive flow. Biophys. J., 50: 109–121

    Article  Google Scholar 

  • Dembo M., Maltrud M. and Harlow F. (1986) Numerical studies of unreactive contractile networks. Biophys. J., 50: 123–137

    Article  Google Scholar 

  • Ezzell R.M., Brothers A.J. and Cande W. (1983) Phosphorylation dependent contraction of actomyosin gels from amphibian eggs. Nature, 306: 620–622

    Article  Google Scholar 

  • Gebhart B. and Pera L. (1971) The nature of vertical natural flows resulting from the combined buoyancy effects of thermal and mass diffusion. Int. Journal of Heat and Mass Transfer, 14: 2025–2049

    Article  MATH  Google Scholar 

  • Janmey P.A., Hvidt S., Peetermans J., Lamb J., Ferry J.D. and Stossel T.P. (1988) Viscoelasticity of F—actin and F—actin/gelsolin complexes. In Press.

    Google Scholar 

  • Lackie J.M. (1986) Cell movement and cell behaviour. Allen & Unwin, London

    Book  Google Scholar 

  • Oster G. F. and Odell G. M. (1984) Mechanics of cytogels I: oscillations in physarum. Cell Motility, 4: 469–503

    Article  Google Scholar 

  • Pohl T. (1989) Fluid dynamical approach in modeling cyclic movements of actomyosin gels. Preprint no.94, SFB 256, Universität Bonn, Wegelerstr.6, 5300 BONN 1, FRG

    Google Scholar 

  • Zaner K.S. and Hartwig J.H. (1986) The effect of filament shortening on the mechanical properties of gel—filtered actin. J. of Biological Chemistry, 28: 7615–7620

    Google Scholar 

  • Zaner K.S. and Stossel P.T.(1983) Physical basis of the rheologic properties of F— actin. J. of Biological Chemistry, 25: 11004–11011

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pohl, T. (1990). Periodic Contraction Waves in Cytoplasmic Extracts. In: Alt, W., Hoffmann, G. (eds) Biological Motion. Lecture Notes in Biomathematics, vol 89. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-51664-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-51664-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53520-1

  • Online ISBN: 978-3-642-51664-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics