Skip to main content

Helical Orientation — A Novel Mechanism for the Orientation of Microorganisms

  • Chapter
Biological Motion

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 89))

Abstract

This paper describes how helical motion can act both as a strategy for sampling a stimulus field and as a mechanism for orienting to that field. Namely, an organism can orient to a stimulus by pointing its rotational velocity vector towards the source of the stimulus. This is accomplished if the components of the rotational velocity are simple functions of the stimulus intensity. Evidence supporting this hypothesis is presented both from published observations of microorganisms and from experiments in which spermatazoa of the sea urchin, Arbacia punctulata, are tracked in three dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blake J.R. and Sleigh M.A. (1974) Mechanics of ciliary locomotion. Biol. Rev. 49: 85 – 125

    Article  Google Scholar 

  • Boscov J.S. and Feinleib M.E. (1979) Phototactic response of Chlamydomonas to light. II. Response of individual cells. Photochem. Photobiol. 30: 499 – 505

    Article  Google Scholar 

  • Brokaw C.J. (1958) Chemotaxis of bracken spermatozoids. Ph.D. thesis. Cambridge University, Cambridge

    Google Scholar 

  • Brokaw C.J. (1970) Bending moments in free-swimming flagella. J. Exp. Biol. 53: 445 – 464

    Google Scholar 

  • Brokaw C.J. (1974) Calcium and flagellar response during the Chemotaxis of bracken spermatozoids. J. Cell. Physiol. 83: 151 – 158

    Article  Google Scholar 

  • Brokaw C.J. (1979) Calcium-induced asymmetrical beating of Triton-demembranated sea urchin sperm flagella. J. Cell Biol. 82: 401 – 411

    Article  Google Scholar 

  • Brokaw C.J., Josslin R., and Bobrow L. (1974) Calcium ion regulation of flagellar beat symmetry in reactivated sea urchin spermatozoa. Biochem. Biophys. Res. Commun. 58: 795 – 800

    Article  Google Scholar 

  • Chwang A.T. and Wu T.Y. (1971) A note on the helical movement of micro-organisms. Proc. Roy. Soc. Lond. B. 178: 327 – 346

    Article  Google Scholar 

  • Crenshaw H.C. (1989a) The kinematics of the helical motion of microorganisms capable of motion with four degrees of freedom. Biophys. J. 56: 1029 – 1035

    Article  Google Scholar 

  • Crenshaw H.C. (1989b) The helical motion of microorganisms: A novel orientation mechanism. Ph.D. Thesis. Duke University, Durham, North Carolina

    Google Scholar 

  • Fenchel T. and Jonsson P.R. (1988) The functional biology of Strombidium sulcatum, a marine oligotrich ciliate (Ciliophora, Oligotrichina). Mar. Ecol. Prog. Ser. 48: 1–15

    Article  Google Scholar 

  • Foster K.W. and Smyth R.D. (1980) Light antennas in phototactic algae. Microbiol. Rev. 44: 572 – 630

    Google Scholar 

  • Gibbons B.N. and Gibbons I.R. (1980) Calcium-induced quiescence in reactivated sea urchin sperm. J. Cell Biol. 84: 13 – 27

    Article  Google Scholar 

  • Goldstein S.F. (1977) Asymmetric waveforms in echinoderm sperm flagella. J. Exp. Biol. 71: 157 – 170

    Google Scholar 

  • Gray J. (1955) The movement of sea-urchin spermatozoa. J. Exp. Biol. 32: 775 – 801

    Google Scholar 

  • Hildebrand E. and Dryl S. (1983) Dependence of ciliary reversal in Paramecium on extracellular Ca++ concentration. J. Comp. Physiol. A. 152: 385 – 394

    Article  Google Scholar 

  • Jennings H.S. (1901) On the significance of spiral swimming in organisms. Amer. Nat. 35: 369 – 378

    Article  Google Scholar 

  • Jennings H.S. (1904) Contributions to the study of the behavior of lower organisms. Carnegie Inst, of Wash. Publ. No. 16

    Book  Google Scholar 

  • Kamiya R. and Witman G.B. (1984) Submicromolar levels of calcium control the balance of beating between the two flagella in demembranated models of Chlamydomonas. J. Cell Biol. 98: 97 – 107

    Article  Google Scholar 

  • Katz D.F. and Blake J.R. (1975) Flagellar motions near walls. In T.Y.-T. Wu, C.J. Brokaw, and C. Brennen (eds.) Swimming and Flying in Nature, vol. 1: 173 – 184. Plenum Press, New York

    Google Scholar 

  • Keller J.B. and Rubinow S.I. (1976) Swimming of flagellated microorganisms. Bio-phys. J. 16: 151 – 170

    Google Scholar 

  • Keller S.R. (1977) Mechanics of flagellar motion with an application to a conical spiral flagellate. J. Theor. Biol. 68: 73 – 94

    Article  Google Scholar 

  • Machemer H. (1989) Cellular behaviour modulated by ions: Electrophysiological implications. J. Protozool. 36: 463 – 487

    Google Scholar 

  • Machemer H. and Sugino K. (In press) Electrophysiological control of ciliary beating: A basis of motile behaviour in ciliated Protozoa. Comp. Biochem. Physiol.

    Google Scholar 

  • Mast G.O. (1911) Light and the Behavior of Organisms. John Wiley, New York

    Book  Google Scholar 

  • Miller R.L. (1985) Sperm chemo-orientation in the metazoa. In: C.B. Metz and A. Mon-roy (eds.) Biology of Fertilization. Vol. 2: 276 – 337. Academic Press, New York

    Google Scholar 

  • Müller D.G. (1978) Locomotive responses of male gametes to the species specific sex attractant in Ectocarpus siliculosus (Phaeophyta). Arch. Protistenk. 120: 371 – 377

    Article  Google Scholar 

  • Naitoh Y. and Sugino K. (1984) Ciliary movement and its control in Paramecium. J. Protozool. 31: 31 – 40

    Google Scholar 

  • Okuno M. and Brokaw C.J. (1981) Effects of Triton-extraction conditions on beat symmetry of sea urchin sperm flagella. Cell Motil. 1: 363 – 370

    Article  Google Scholar 

  • Omoto C.K. and Brokaw C.J. (1985) Bending patterns of Chlamydomonas flagella. II. Calcium effects on reactivated Chlamydomonas flagella. Cell Motil. 5: 53 – 60

    Article  Google Scholar 

  • Párducz B. (1964) Swimming and its ciliary mechanism in Ophryoglena sp. Acta Protozool. 2: 367 – 374

    Google Scholar 

  • Rikmenspoel R., van Herpen G., and Eijkhout P. (1960) Cinematographic observations of the movements of bull sperm cells. Phys. Med. Biol. 5: 167 – 181

    Article  Google Scholar 

  • Rüffer U. and Nultsch W. (1985) High-speed cinematographic analysis of the movement of Chlamydomonas. Cell Motil. 5: 251 – 263

    Article  Google Scholar 

  • Rüffer U. and Nultsch W. (1987) Comparison of the beating of eis- and trans-flagella of Chlamydomonas cells held on micropipettes. Cell Motil. Cytoskel. 7: 87 – 93

    Article  Google Scholar 

  • Symon K.R. (1971) Mechanics. 3rd ed. Addison-Wesley, Reading, Massachusetts

    Google Scholar 

  • Sugino K. and Naitoh Y. (1988) Swimming path measurement in Paramecium- Estimation of ciliary activity from the swimming path. Seitai Nō Kagaku. 39(5): 485 – 490

    Google Scholar 

  • van Houten J., Hauser D.C.R., and Levandowsky M. (1981) Chemosensory behavior in protozoa. In: M. Levandowsky and S.H. Hutner (eds.) Biochemistry and Physiology of Protozoa. 2nd ed. vol. 4: 67 – 124. Academic Press, New York

    Google Scholar 

  • Ward G.E., Brokaw C.J., Garbers D.L., and Vacquier V.D. (1985) Chemotaxis of Ar-bacia punctulata spermatozoa to Resact, a peptide from the egg jelly layer. J. Cell Biol. 101: 2324 – 2329

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Crenshaw, H.C. (1990). Helical Orientation — A Novel Mechanism for the Orientation of Microorganisms. In: Alt, W., Hoffmann, G. (eds) Biological Motion. Lecture Notes in Biomathematics, vol 89. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-51664-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-51664-1_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53520-1

  • Online ISBN: 978-3-642-51664-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics