Skip to main content

Tracking of Flagellates by Image Analysis

  • Chapter
Biological Motion

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 89))

Abstract

Oriented movement of flagellates with respect to the stimulus direction such as light or gravity is tracked in real time using image analysis. The organisms are observed in dark field in order to enhance the contrast using a CCD camera. Algorithms have been developed to follow the track of randomly selected organisms for a predefined period of time. Velocity and angular deviation can be extracted from the raw data. Histograms constructed from these data show that the organisms orient with respect to light and gravity often using antagonistic responses to accumulate in distinct horizons of suitable conditions. This can be verified by using a vertical plexiglass column inserted into a natural habitat from which samples are taken at regular time intervals along the length of the tube, which indicates that the populations undergo daily vertical migrations which serve to keep the photosynthetic organisms in suitable light conditions for photosynthesis and to avoid too bright irradiation which can photobleach or even kill the population.

Solar ultraviolet radiation has been found to damage photoorientation and motility in a number of phytoplankton flagellates even at currently observed levels. The mechanism of inhibition does not seem to involve DNA damage or photodynamic responses but rather affect the pigment composition of the cells directly. Any increase in the solar UV-B radiation due to a partion destruction of the stratospheric ozon layer by e.g. CFC gases may adversly affect the biomass production and contribute to global climate changes because the oceanic phytoplankton communities are the major sink for atmospheric CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bancroft F.W. (1913) Heliotropism, differential sensibility and galvanotropism in Euglena. J Exp Zool 15:383–420.

    Article  Google Scholar 

  • Batschelet E. (1965) Statistical methods for the analysis of problems in animal orientation and certain biological rhythms, pp. 61–91. In: S.R. Galles, K. Schmidt-Koenig, G.J. Jacobs, R.F. Belleville (Edit) Animal orientation and navigation. Washington: NASA.

    Google Scholar 

  • Batschelet E. (1981) Circular Statistics in Biology. London: Academic Press.

    MATH  Google Scholar 

  • Bean B. (1984) Microbial geotaxis, in Membranes and Sensory Transduction, pp. 163–198. In: G. Colombetti and F. Lend (Edit.). New York, London: Plenum Press

    Chapter  Google Scholar 

  • Benedetti P.A. and Checcucci A. (1975) Paraflagellar body (PFB) pigments studied by fluorescence microscopy in Euglena gracilis. Plant.Sci.Lett 4:47–51.

    Article  Google Scholar 

  • Berg H.C. (1985) Physics of bacterial Chemotaxis, in Sensory Perception and Transduction in Aneural Organisms, pp. 19–30. In: G. Colombetti, F. Lend and P.-S. Song (Edit.). New York, London: Plenum Press.

    Chapter  Google Scholar 

  • Berns G.S. and Berns M.W. (1982) Computer-based tracking of living cells. Exp.Cell Res. 142:103–109.

    Article  Google Scholar 

  • Brinkmann K. (1968) Keine Geotaxis bei Euglena. Z Pflanzenphysiol. 59:12–16.

    Google Scholar 

  • Bryan S.R., Woodward W.S., Griffis D.P. and Linton R.W. (1985) A microcomputer based digital imaging system for ion microanalysis. J.Microsc. 138:15–28.

    Article  Google Scholar 

  • Burns N.M. and Rosa K (1980) In situ measurements of the settling velocity of organic carbon particles and ten species of phytoplankton. Limnol. Oceanogr. 25:855–864.

    Article  Google Scholar 

  • Colombetti G., Häder D.-P., Lend F. and Quaglia M. (1982) Phototaxis in Euglena gracilis: effect of sodium azide and triphenylmethyl pnosphonium ion on the photosen-sory transduction chain. Cur.r Microbiol. 7: 281 – 284.

    Article  Google Scholar 

  • Diehn B. (1969) Action spectra of the phototactic responses in Euglena. Biochim Biophys Acta 177: 136–143.

    Article  Google Scholar 

  • Diehn B., Feinleib M., Haupt W., Hildebrand E., Lend F. and Nultsch W. (1977) Terminology of behavioral responses of motile microorganisms. Photochem Photobiol 26: 559–560.

    Article  Google Scholar 

  • Doughty M.J. and Diehn B. (1980) Flavins as photoreceptor pigments for behavioral responses. Structure and Bonding 41:45–70.

    Article  Google Scholar 

  • Doughty M.J. and Diehn B. (1982) Photosensory transduction in the flagellated alga, Euglena gracilis. III. Induction of Ca2+ -dependent responses by monovalent cation ionophores. Biochim. Biophys. Acta 682:32–43.

    Article  Google Scholar 

  • Doughty M.J. and Diehn B. (1983) Photosensory transduction in the flagellated alga, Euglena gracilis. IV. Long term effects of ions and pH on the expression of step-down photobehavior. Arch. Microbiol. 134:204–207.

    Article  Google Scholar 

  • Doughty M.J. and Diehn B. (1984) Anion sensitivity of motility and step-down photo-phobic responses of Euglena gracilis. Arch. Microbiol. 138:329–332.

    Article  Google Scholar 

  • Dowideit G.R., Newman D.G. and Young CM. (1983) A new automated approach to high-density facial measurement. Part 1: The image capturing and processing hardware. Int.J.Bio-Medical Computing 14:403–409.

    Article  Google Scholar 

  • Ekelund N. and Häder D.-P. (1988) Photomovement and photobleaching in two Gyro-dinium species. Plant Cell Physiol. 29:1109–1114.

    Google Scholar 

  • Forward jr. R.B. (1975) Dinoflagellate phototaxis: Pigment system and circadian rhythm as related to diurnal migration, pp. 367–381. In: F. Vernberg (Edit.) Physiological Ecology of Estuarine Organisms. Columbia: Univ. South Carolina Press.

    Google Scholar 

  • Forward jr. R.B. (1976) Lignt and diurnal vertical migration: Photobehavior and photo-physiology of plankton, in Photochemical and Photobiological Reviews, Vol. 1 (Smith, K.C., Ed.), Plenum Pess, New York, London, pp. 157–209

    Chapter  Google Scholar 

  • Foster K.W. and Smyth R.D. (1980) Light antennas in phototactic algae. Microbiol.Rev. 44:572–630.

    Google Scholar 

  • Frankel R.B. (1984) Magnetic guidance of organisms. Ann. Rev. Biophys. Bioeng. 13: 85–103.

    Article  Google Scholar 

  • Ghetti F., Colombetti G., Lend F., Campani E., Polacco E. and Quaglia M. (1985) Fluorescence of Euglena gracilis photoreceptor pigment: an in vivo microspectrofluoro-metric study. Photochem Photobiol 42:29–33.

    Article  Google Scholar 

  • Gössel I. (1957) Über das Aktionsspektrum der Phototaxis chlorophyllfreier Euglenen und über die Absorption des Augenflecks. Arch. Mikrobiol. 27: 288–305.

    Article  Google Scholar 

  • Grant R. and Reid A.F. (1981) An efficient algorithm for boundary tracing and feature extraction. Comput. Graphics Image Process. 17: 225–237.

    Article  Google Scholar 

  • Gualtieri P., Barsanti L. and Rosati G. (1986) Isolation of the photoreeptor (paraflagellar body) of the phototactic flagellate Euglena gracilis. Arch. Microbiol. 145:303–305.

    Article  Google Scholar 

  • Hall R.W. (1983) Image processing algorithms for eye movement monitoring. Comput.Biomed.Res. 16: 563–579.

    Article  Google Scholar 

  • Harms H., Boseck S., Aus H.M. and Lenz V. (1981) Untersuchungen der Abtastbedingungen bei Zellbildern mit einem Mikroskop-TV-System. Microscopica Acta 85:69–82.

    Google Scholar 

  • Haupt W. (1983) Photoperception and photomovement. Phil.Trans.R.Soc.Lond. B303: 467–478.

    Google Scholar 

  • Häder D.-P., Colombetti G., Lend F. and Quaglia M. (1981) Phototaxis in the flagellates, Euglena gracilis and Ochromonas danica. Arch.Microbiol. 130: 78–82.

    Article  Google Scholar 

  • Häder D.-P. (1985) Computer-aided studies of photoinduced behaviors,pp. 75–91. In: G. Colombetti, F. Lend, P.-S. Song (Edit.) Sensory perception and transduction in aneural organisms. New York, London: Plenum Press.

    Google Scholar 

  • Häder D.-P.(1986a) The effect of enhanced solar UV-B radiation on motile microorganisms, pp. 223–233. In: R.C. Worrest and M.M. Caldwell (Edit.) Stratospheric ozone reduction, solar ultraviolet radiation and plant life. Berlin, Heidelberg, New York: Springer Verlag.

    Chapter  Google Scholar 

  • Häder D.-P. (1986b) Effects of solar and artificial UV irradiation on motility and photo-taxis in the flagellate, Euglena gracilis. Photochem.Photobiol. 44:651 – 656.

    Article  Google Scholar 

  • Häder D.-P. (1987a) Polarotaxis, gravitaxis and vertical phototaxis in the green flagellate, Euglena gracilis. Arch. Microbiol. 147:179–183.

    Article  Google Scholar 

  • Häder D.-P. (1987b) Effects of UV-B irradiation on photomovement in the desmid, Cos-marium cucumis. Photochem.Photobiol. 46: 121–126.

    Article  Google Scholar 

  • Häder D.-P. (1988a) Computer-assisted image analysis in biological sciences. Proc.Indian Acad.Sci. (Plant Sci.) 98:227–249.

    Google Scholar 

  • Häder D.-P. (1988b) Ecological consequences of photomovement in microorganisms. J.Photochem.Photobiol.B: Biol. 1:385–414.

    Article  Google Scholar 

  • Häder D.-P. and Griebenow K. (1987) Versatile digital image analysis by microcomputer to count microorganisms. EDV Med. Biol. 18: 37–42.

    Google Scholar 

  • Häder D.-P. and Griebenow K. (1988) Orientation of the green flagellate, Euglena gracilis, in a vertical column of water. FEMS Microbiol.Ecol. 53:159–167.

    Article  Google Scholar 

  • Häder D.-P. and Häder M. (1988a) Ultraviolet-B inhibition of motility in green and dark bleached Euglena gracilis. Current Microbiol. 17: 215–220.

    Article  Google Scholar 

  • Häder D.-P. and Häder M.A. (1988b) Inhibition of motility and phototaxis in the green flagellate, Euglena gracilis, by UV-B radiation. Arch.Microbiol. 150: 20–25.

    Article  Google Scholar 

  • Häder D.-P. and Häder M.A. (1989) Effects of solar UV-B irradiation on photomovement and motility in photosynthetic and colorless flagellates. Environ.Exp.Bot. 29: 273–282.

    Article  Google Scholar 

  • Häder D.-P. and Lebert M. (1985) Real time computer-controlled tracking of motile microorganisms. Photochem.Photobiol. 42:509–514.

    Article  Google Scholar 

  • Häder D.-P. and Lipson E. (1986) Fourier analysis of angular distributions for motile microorganisms. Photochem.Photobiol. 44:657–663.

    Article  Google Scholar 

  • Häder D.-P. and Tevini M. (1987) General photobiology. Pergamon Press.

    Google Scholar 

  • Häder D.-P., Watanabe M. and Furuya M. (1986a) Inhibition of motility in the cyanobac-terium, Phormidium uncinatum, by solar and monochromatic UV irradiation. Plant Cell Physiol. 27: 887–894.

    Google Scholar 

  • Häder D.-P., Lebert M. and DiLena M. R. (1986b) New Evidence for the mechanism of phototactic orientation of Euglena gracilis. Curr.Microbiol. 14,157–163.

    Article  Google Scholar 

  • Häder D.-P., Lebert M. and DiLena M. R. (1987) Effects of culture age and drugs on phototaxis in the green flagellate, Euglena gracilis. Plant Physiol. (Life Sci.Adv.) 6:169–174.

    Google Scholar 

  • Häder D.-P., Rhiel E. and Wehrmeyer W. (1988) Ecological consequences of photomovement and photobleaching in the marine flagellate Cryptomonas maculata. FEMS MicrobioI.Ecol. 53: 9–18.

    Article  Google Scholar 

  • Jennings H.S. (1904) Reactions to light in ciliates and flagellates, pp 29–71. In: Contributions to the study of the behavior of microorganisms. Washington: Carnegie Inst Washington.

    Chapter  Google Scholar 

  • Julez B. and Harmon L.D. (1984) Noise and recognizability of coarse quantized images. Nature 308:211–211.

    Article  Google Scholar 

  • Kessler J.O. (1985) Hydrodynamic focusing of motile algal cells. Nature (London) 313: 218–220.

    Article  Google Scholar 

  • Kessler J.O. (1986) The external dynamics of swimming microorganisms, pp. 258–307. In: Round anf Chapman (Edit.) Progress in Phycological Research. Biopress Ltd 4.

    Google Scholar 

  • MacNab R.M. (1985) Biochemistry of sensory transduction in bacteria, pp. 31–46. In: G. Colombetti, F. Lend and P.-S. Song (Edit.) Sensory Perception and Transduction in Aneural Organisms. New York, London: Plenum Press.

    Chapter  Google Scholar 

  • Mardia K.V. (1972) Statistics of Directional Data. London: Acad Press.

    MATH  Google Scholar 

  • Mayfield C.I. (1984) A simple computer-based video image analysis system and potential applications to microbiology. J.Microbiol.Meth. 3:61–67.

    Article  Google Scholar 

  • Mizuno T., Maeda K. and Imae Y. (1984) Thermosensory transduction in Escherichia coli, pp. 147–195. In: F. Oosawa, T. Yoshioka and H. Hayashi (Edit.) Transmembrane Signaling and Sensation. Japan Sci.Soc.Press, Tokyo and VNU Sci. Press BV, Netherlands.

    Google Scholar 

  • Nultsch W. and Häder D.-P. (1988) Photomovement in motile microorganisms II. Pho-tochem.Photobiol. 47: 837–869.

    Article  Google Scholar 

  • Ofer S., Nowik I., Bauminger E.R., Papaefthymiou G.C., Frankel R.B. and Blakemore R.P. (1984) Magnetosome dynamics in magnetotactic bacteria. Biophys.J. 46: 57–64.

    Article  Google Scholar 

  • Poff K.L. (1985) Temperature sensing in microorganisms, pp. 299–307. In: G. Colom-betti, F. Lenci and P.-S. Song (Edit.) Sensory Perception and Transduction in Aneural Organisms. New York, London: Plenum Press.

    Chapter  Google Scholar 

  • Rhiel E., Häder D.-P. and Wehrmeyer W. (1988a) Photo-orientation in afreshwater Cry-ptomonas species. J.Photochem.Photobiol. B: Biol. 2:123–132.

    Article  Google Scholar 

  • Rhiel E., Häder D.-P. and Wehrmeyer W. (1988b) Diaphototaxis and gravitaxis in a freshwater Cryptomonas. Plant Cell Physiol. 29:755–760.

    Google Scholar 

  • Spector D.L (1984) Dinoflagellates. Orlando, Florida: Acad. Press Inc.

    Google Scholar 

  • Squire J.M., Luther P.K. and Agnew G.D. (1986) Averaging of periodic images using a microcomputer. J.Microsc. 142:289–300.

    Article  Google Scholar 

  • Stolz J.F., Chang S.-B.R. and Kirschvink J.L. (1986) Magnetotactic bacteria and single-domain magnetite in hemipelagic sediments. Nature 321:849–851.

    Article  Google Scholar 

  • Tangen K. (1977) Blooms of Gyrodinium aureolum (Dinophyceae) in north European water, accompanied by mortality in marine organisms. Sarsia 63: 123–133.

    Google Scholar 

  • Watanabe M. and Furuya M. (1982) Phototactic behavior of individual cells of Cryptomonas sp. in response to continuous and intermittent light stimuli. Photochem.Pho-tobiol. 35: 559–563.

    Article  Google Scholar 

  • Wolken J.J., Shin E. (1958) Photomotion in Euglena gracilis I. Photokinesis II. Photo-taxis. J. Protozool. 5:39–46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Häder, D.P. (1990). Tracking of Flagellates by Image Analysis. In: Alt, W., Hoffmann, G. (eds) Biological Motion. Lecture Notes in Biomathematics, vol 89. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-51664-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-51664-1_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53520-1

  • Online ISBN: 978-3-642-51664-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics