Skip to main content

Flight Manoeuvres of Locusts

  • Chapter
Biological Motion

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 89))

  • 255 Accesses

Abstract

Solutions of non-linear partial differential equations are necessary for the calculation of unsteady aerodynamic forces produced by flying animals. There is a new aerodynamic concept (Send 1989) which could solve the unsteady problems of insect flight. According to this concept, nine kinematic parameters of a single wing are aerodynamically important. We will present our way to analyse the kinematic parameters of locust flight.

The flight system of locusts (Schistocerca gregaria) integrates several feedbacks inside and outside the animal. When a locust is fastened to any support, outside feedbacks are normally opened. Visual (outside) feedbacks can be closed by means of flight simulators. In roll manoeuvres of locusts performed in slow and fast flight simulators, long flight sequences occured with tonic responses to visual stimuli. But the locusts were able to change between tonic and phasic responses if they had no success with their current intention. Locusts with very stereotype wing-beat performed random flight behaviour too. With slow simulators, the reaction time was always of several seconds. With a quick simulator, the reaction time was less than 0.1 s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Burkhardt D. (1971) Wörterbuch der Neurophysiologie. Jena: VEB Gustav Fischer Verlag, 2. Auflage

    Google Scholar 

  • Burrows M (1977) Flight mechanisms of the locust. In: Hoyle E (ed) Identified neurons and behaviour of arthropods. Plenum Press, New York London

    Google Scholar 

  • Götz K.G. (1987) Relapse to ‘preprogrammed’ visual flight-control in a muscular subsystem of the drosophila mutant ‘small optic lobes’. J. Neurogenetics 4: 133–135

    Google Scholar 

  • Götz K.G. and Wandel U. (1984) Optomotor control of the force of flight in Drosophila and Musca. II. Covariance of lift and thrust in still air. Biol. Cybern. 51: 135–139

    Article  Google Scholar 

  • Heisenberg M. (1983) Initiale Aktivität und Willkürverhalten bei Tieren. Naturwissenschaften 70: 70–78

    Article  Google Scholar 

  • Heisenberg M. and Wolf R. (1988) Reafferent control of optomotor yaw torque in Drosophila melanogaster. J. Comp. Physiol. A 163: 373–388

    Article  Google Scholar 

  • Koch U. (1977) A miniature movement detector applied to recording of wingbeat in locusta. Fortschr. Zool. 24 H2/3: 327–332

    Google Scholar 

  • Koch U.T. and Elliott C.J.H. (1983) Miniature angle detectors — Principle and improved evaluation methods. In: Nachtigall W (ed) BIONA-report vol.1: 41–50, Akad Wiss Mainz, Gustav Fischer, Stuttgart New York

    Google Scholar 

  • Küssner H.G. (1936) Zusammenfassender Bericht über den instationären Auftrieb von Flügeln. In: Luftfahrtforschung, Bd. 13 (1936), p. 410–424

    Google Scholar 

  • Lighthill M.J. (1973) On the Weis-Fogh mechanism of lift generation. J. Fluid Mech 60: 1–17

    Article  MATH  Google Scholar 

  • Möhl B. (1988) Short-term learning during flight control in Locusta migratoria. J. Comp. Physiol. A 163: 803–812

    Article  Google Scholar 

  • Möhl B. (1989a) Sense organs and the control of flight. In: Goldsworthy G.J. and Wheeler C.H. (eds.) Insect flight. pp.75–97. Boca Raton (Florida): CRC Press Inc.

    Google Scholar 

  • Möhl B. (1989b) Function-oriented plasticity of a sensorimotor pathway in the locust flight system. Naturwissenschaften 76: 130–132

    Article  Google Scholar 

  • Möhl B. and Zarnack W. (1977) Activity of the direct downstroke flight muscles of Locusta migratoria L. during steering behavior in flight. II. Dynamics of the time shift and changes in burst length. J. Comp. Physiol. A 118: 235–247

    Article  Google Scholar 

  • Nachtigall W. (1983) Untersuchungen zum Flug der Dipteren. Stationäre Luftkraftmessungen an Flügeln, Flügelbewegungen beim Steigflug und stationäre Meßgrößen beim Flug vor dem Windkanal. In: Nachtigall W. (ed.) BIONA-report vol. 1: 51–60. Akad Wiss Mainz. Stuttgart, New York: Gustav Fischer

    Google Scholar 

  • Preiss R. and Gewecke M. (1988) Visually-induced wind compensation in the migratory flight of the desert locust, Schistocerca gregaria. In: Eisner N. and Barth F.G. (eds.) Sense Organs — Interfaces between environment and behaviour. Poster 38. Stuttgart New York: Georg Thieme Verlag

    Google Scholar 

  • Reuse G. and Zarnack W. (1988) Wing beat velocities and muscle activity correlated with hindwing movements in locusts. In: Eisner N. and Barth F.G. (eds.) Sense Organs -Interfaces between environment and behaviour. Poster 124. Stuttgart New York: Georg Thieme Verlag

    Google Scholar 

  • Robert D. (1988) Visual steering under closed-loop conditions by flying locusts: flexibility of optomotor response and mechanisms of correlational steering. J. Comp. Physiol. A 164:15–24

    Article  Google Scholar 

  • Rowell C.H.F. (1988) Mechanisms of steering in flight by locusts. In: Seiverston A.I. (ed.) Model Neuronal Networks and Behavior. pp. 21–35. Plenum Press. New York

    Google Scholar 

  • Scharstein H. and Zarnack W. (1989) Physiology of motion and its control in higher animals. In: Alt W. and Hoffmann G. (eds.) Biological Motion. Berlin Heidelberg New York: Springer

    Google Scholar 

  • Schmidt J. and Zarnack W. (1987) The motor pattern of locusts during visually induced rolling in long-term flight. Biol. Cybern. 56: 397–410

    Article  Google Scholar 

  • Schwenne T. and Zarnack W. (1987) Movements of the hindwings of Locusta migratoria, measured with miniature coils. J. Comp. Physiol. A 160: 657–666

    Article  Google Scholar 

  • Send W. (1989) Unsteady lift and moment coefficients of an engine nacelle, pp. 159–168. In: Proc of the European Forum on aeroelasticity and structural dynamics. Bonn: DGLR

    Google Scholar 

  • Thüring D.A. (1986) Variability of motor output during flight steering in locusts. J. Comp. Physiol. A 158: 653–664

    Article  Google Scholar 

  • Waldmann B. and Zarnack W. (1988) Forewing movements and motor activity during rollmanoeuvers in flying desert locust. Biol. Суbеrn. 59: 325–335

    Google Scholar 

  • Waldron I. (1967) Neural mechanismen by which controlling inputs influence motor output in the flying locust. J. Exp. Biol. 47: 213–228

    Google Scholar 

  • Wendler G. (1974) The influence of proprioceptive feedback on locust flight coordination. J. Comp. Physiol. 88: 173–200

    Article  Google Scholar 

  • Wilson D.M. (1961) The central nervous control of flight in a locust. J. exp. Biol. 38: 471–490

    Google Scholar 

  • Wilson D. (1968) Inherent asymmetry and reflex modulation of the locust flight motor pattern. J. Exp. Biol. 48: 631–641

    Google Scholar 

  • Zanker J.M. (1987) Über die Flugkrafterzeugung und Flugkraftsteuerung der Fruchtfliege Drosophila melanogaster. Diss FB Biologie Universität Tübingen

    Google Scholar 

  • Zarnack W. (1972) Flugbiophysik der Wanderheuschrecke (Locusta migratoria L.) I. Die Bewegungen der Vorderflügel. J. Comp. Physiol. 78: 356–395

    Article  Google Scholar 

  • Zarnack W. (1978) A transducer recording continuously 3-dimensional rotations of biological objects. J. Comp. Physiol. A 126: 161–168

    Article  Google Scholar 

  • Zarnack W. (1983) Untersuchungen zum Flug von Wanderheuschrecken. Die Bewegungen, räumlichen Lagebeziehungen sowie Formen und Profile von Vorder- und Hinterflügeln. In: Nachtigall W. (ed.) BIONA-report vol. 1: 79–102, Akad Wiss Mainz. Stuttgart New York: Gustav Fischer

    Google Scholar 

  • Zarnack W. (1988) The effect of forewing depressor activity on wing movement during locust flight. Biol. Cybern. 59: 55–70

    Article  Google Scholar 

  • Zarnack W. and Möhl B. (1977) Activity of the direct downstroke flight muscles of Locusta migratoria L. during steering behaviour in flight. I. Pattern of time shift. J. Comp. Physiol. A 118: 215–233

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zarnack, W., Reuse, G., Schwenne, T. (1990). Flight Manoeuvres of Locusts. In: Alt, W., Hoffmann, G. (eds) Biological Motion. Lecture Notes in Biomathematics, vol 89. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-51664-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-51664-1_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53520-1

  • Online ISBN: 978-3-642-51664-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics