Skip to main content

Ca-Mg Control of Ciliary Motion: A Quantitative Model Study

  • Chapter
Biological Motion

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 89))

  • 251 Accesses

Abstract

We have developed a generalized model for Ca-mediated control of ciliary beating using established data from the literature. According to the model, both direction and frequency of beating are controlled by membrane-regulated Ca2+ as the intraciliary messenger including a modulatory function of Mg2+ which competes with Ca2+ for binding to an axonemal protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bonini N.M. and Nelson D.L. (1988) Differential regulation of Paramecium ciliary motility by cAMP and cGMP. J. Cell Biol. 106: 1615–1623

    Article  Google Scholar 

  • Bonini N.M., Gustin M.C. and Nelson D.L. (1986) Regulation of ciliary motility by membrane potential in Paramecium: a role for cyclic AMP. Cell Motility Cytoskel. 6: 256–272

    Article  Google Scholar 

  • Brokaw C.J., Josslin R. and Bobrow L. (1974) Calcium ion regulation of flagellar beat symmetry in reactivated sea urchin spermatozoa. Biochem. Biophys. Res. Commun. 58: 795–800

    Article  Google Scholar 

  • Hennessey Т., Machemer H. and Nelson D.L. (1985) Injected cyclic AMP increases ciliary beat frequency in conjunction with membrane hyperpolarization. Eur. J. Cell Biol. 36: 153–156

    Google Scholar 

  • Izumi A. and Nakaoka Y. (1987) cAMP-mediated inhibitory effect of calmodulin antagonists on ciliary reversal of Paramecium. Cell Motility Cytoskel. 7: 154–159

    Article  Google Scholar 

  • Machemer H. (1974) Frequency and directional responses of cilia to membrane potential changes in Paramecium. J. Comp. Physiol. 92: 293–316

    Article  Google Scholar 

  • Machemer H. (1976) Interactions of membrane potential and cations in regulation of ciliary activity in Paramecium. J. Exp. Biol. 65: 427–448

    Google Scholar 

  • Machemer H. (1986) Electromotor coupling in cilia. In: H.C. Lüttgau (Edit) Membrane control of cellular activity. Fortschr. Zool. 33: 205–250

    Google Scholar 

  • Machemer H. and De Peyer J.E. (1982) Analysis of ciliary beating frequency under voltage-clamp control of the membrane. Cell Motility (Suppl.) 1: 205–210

    Article  Google Scholar 

  • Naitoh Y. and Kaneko H. (1972) Reactivated Triton-extracted models of Paramecium: modification of ciliary movements by calcium ions. Science 176: 523–524

    Article  Google Scholar 

  • Naitoh Y. and Kaneko H. (1973) Control of ciliary activity by adenosinetriphosphate and divalent cations in Triton-extracted models of Paramecium caudatum. J. Exp. Biol. 58: 657–676

    Google Scholar 

  • Nakaoka Y. and Machemer H. (1990) Effects of cyclic nucleotides and intracellular Ca2+ on voltage-activated ciliary beating in Paramecium J. Comp. Physiol. A 166: 401–406

    Article  Google Scholar 

  • Nakaoka Y. and Toyotama H. (1979) Directional change of ciliary beat effected with Mg2+ in Paramecium. J. Cell Sci. 40: 207–214

    Google Scholar 

  • Nakaoka Y., Tanaka, H. and Oosawa F. (1984) Ca2+-dependent regulation of beat frequency of cilia in Paramecium. J. Cell Sci. 65: 223–231

    Google Scholar 

  • Potter J.D., Strang-Brown P., Walker P.L. and Iida S. (1983) Ca2+ binding to calmodulin. Methods Enzymol. 102: 135–143

    Article  Google Scholar 

  • Schultz J.E., Grünemund R., von Hirschhausen R. and Schönefeld U. (1984) Ionic regulation of cyclic AMP levels in Paramecium tetraurelisa. FEBS Lett., 167: 113–116

    Article  Google Scholar 

  • Brokaw C.J. (1974) Movement of the flagellum of some marine invertebrate spermatozoa: 93–109. In: M.A. Sleigh (ed.) Cilia and flagella. Academic Press, London, New York

    Google Scholar 

  • Gibbons I.R. (1975) The molecular basis of flagellar motility in sea urchin spermatozoa: 207–231. In: S. Inoué and R.E. Stephens (eds.) Molecules and cell movement. Raven Press, New York

    Google Scholar 

  • Hines M. and Blum J.J. (1985) On the contribution of dynein-like activity to twisting in a three-dimensional sliding filament model. Biophys. J. 47: 705–708

    Article  Google Scholar 

  • Ishijima S. and Mohri H. (1985) A quantitative description of flagellar movement in golden hamster spermatozoa. J. Exp. Biol. 114: 463–475

    Google Scholar 

  • Machemer H. (1972a) Properties of polarized ciliary beat in Paramecium. Acta Protozool. 11: 295–300

    Google Scholar 

  • Machemer H. (1972b) Ciliary activity and the origin of meta-chrony in Paramecium: Effects of increased viscosity. J. Exp. Biol. 57: 239–259

    Google Scholar 

  • Machemer H. (1977) Motor activity and bioelectric control of cilia. Fortschr. Zool. 24: 195–210

    Google Scholar 

  • Machemer H. and Eckert R. (1975) Ciliary frequency and orien-tational responses to clamped voltage steps in Paramecium. J. Comp. Physiol. 104: 247–260

    Article  Google Scholar 

  • Machemer H. and Eckert R. (1977) Electromechanical coupling of ciliary activity in Paramecium. Fortschr. Zool. 24: 211–215

    Google Scholar 

  • Machemer H, and Sugino K. (1986) Parameters of the ciliary cycle under membrane voltage control. Cell Motility Cytoskel. 6: 89–95

    Article  Google Scholar 

  • Omoto C.K. and Brokaw C.J. (1983) Quantitative analysis of axonemal bends and twists in the quiescent state of Ciona sperm flagella. Cell Motility 3: 247–259

    Article  Google Scholar 

  • Pape H.C. and Machemer H. (1986) Electrical properties and membrane currents in the ciliate Didinium. J. Comp. Physiol. A 158: 111–124

    Article  Google Scholar 

  • Pitelka D. (1968) Fibrillar systems in protozoa: 280–388. In: T.T. Chen (ed.) Research in protozoology. Pergamon Press, Oxford

    Google Scholar 

  • Sale W.S. and Satir P. (1977) Direction of active sliding of microtubules in Tetrahymena cilia. Proc. Natl. Acad. Sci. USA 74: 2045–2049

    Article  Google Scholar 

  • Satir P. (1985) Switching mechanisms in the control of ciliary motility. Modern Cell Biology 4: 1–46

    Google Scholar 

  • Satir P., Wais-Steider J., Lebduska S., Nasr A. and Avolio J. (1981) The mechanochemical cycle of the dynein arm. Cell Motility 1: 303–327

    Article  Google Scholar 

  • Sugino K. and Machemer H. (1987) Axial-view recording: An approach to assess the third dimension of the ciliary cycle. J. Theor. Biol. 125: 67–82

    Article  Google Scholar 

  • Sugino K. and Machemer H. (1990) Depolarization-controlled parameters of the ciliary cycle and axonemal function. Cell Motil. Cytoskeleton 16: (in press)

    Google Scholar 

  • Sugino K. and Naitoh Y. (1982) Simulated cross-bridge patterns corresponding to ciliary beating in Paramecium. Nature 295: 609–611

    Article  Google Scholar 

  • Tamm S.L. and Tamm S. (1981) Ciliary reversal without rotation of axonemal structures in ctenophore comb plates. J. Cell Biol. 89: 495–509

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mogami, Y., Machemer, H. (1990). Ca-Mg Control of Ciliary Motion: A Quantitative Model Study. In: Alt, W., Hoffmann, G. (eds) Biological Motion. Lecture Notes in Biomathematics, vol 89. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-51664-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-51664-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53520-1

  • Online ISBN: 978-3-642-51664-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics