Skip to main content

The complexity of the median procedure for binary trees

  • Conference paper
New Approaches in Classification and Data Analysis

Summary

The median procedure for trees has been nicely characterized in a way that allows it to be efficiently implemented. However, when the problem is restricted to binary trees, we will show that computing the median binary tree is NP-haxd. This provides another reason to not always insist that a “consensus tree” be fully resolved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • BARTHÉLEMY, J. P., and MONJARDET, B. (1988): The median procedure in data analysis: New results and open problems. In: H. H. Bock (ed.): Classification and Related Methods of Data Analysis. Elsevier, Amsterdam, 309–316.

    Google Scholar 

  • BARTHÉLEMY, J. P., and JANOWITZ, M. (1991): A formal theory of consensus. SIAM Journal on Discrete Mathematics, 4, 305–322.

    Google Scholar 

  • BARTHéLEMY, J. P., and MCMORRIS, F. R. (1986): The medain procedure for n-trees. Journal of Classification, 3, 329–334.

    Article  Google Scholar 

  • BUNEMAN, P. (1971): The recovery of trees from measures of dissimilarity. In: F. R. Hodgson, D. G. Kendall, and P. Tauta (eds.): Mathematics in Archaeological and Historical Sciences. Edinburgh University Press, Edinburgh, 387–395.

    Google Scholar 

  • DAY, W. H. E. (1985): Optimal algorithm for comparing trees with labeled leaves. Journal of Classification, 2, 7–28.

    Article  Google Scholar 

  • DAY, W. H. E. and SANKOFF, D. (1986): Computational complexity of inferring phytogenies by compatibility. Systematic Zoology, 35, 224–229.

    Article  Google Scholar 

  • GAREY, M. R. and JOHNSON, D. S. (1979): Computers and intractability. W. H. Freeman, San Francisco.

    Google Scholar 

  • PENNY, D., FOULDS, L. R., and HENDY, M. D. (1982): Testing the theory of evolution by comparing phylogenetic trees constructed from five different portein sequences. Nature, 291, 197–200.

    Article  Google Scholar 

  • SPENCER, J. (1987): Ten lectures on the probabilistic method. SIAM, Philadelphia.

    Google Scholar 

  • STEEL, M. A., and PENNY, D. (1993): Distributions of tree comparison metrics — some new results. Systematic Biology, 42, 126–141.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

McMorris, F.R., Steel, M.A. (1994). The complexity of the median procedure for binary trees. In: Diday, E., Lechevallier, Y., Schader, M., Bertrand, P., Burtschy, B. (eds) New Approaches in Classification and Data Analysis. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-51175-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-51175-2_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58425-4

  • Online ISBN: 978-3-642-51175-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics