Skip to main content

Part of the book series: Spezielle pathologische Anatomie ((3009,volume 22 / 1))

  • 51 Accesses

Zusammenfassung

Der Herzmuskel besteht aus quergestreiften Muskelzellen von fast zylindrischer Gestalt, die mit angrenzenden Muskelfasern ein komplexes dreidimensionales Netzwerk bilden. Jede Faser besteht aus einzelnen Herzmuskelzellen, die überwiegend End-zu-End, teilweise auch Seit-zu-Seit miteinander verknüpft sind. Die Verbindungszonen werden als Disci intercalares (Sommer 1982) bezeichnet. Die Länge einer ventrikulären Muskelzelle beträgt etwa 80 µm, die Breite wurde mit 10–25 µm angegeben (Muir 1965; Truex 1972; Hirakow u. Gothon 1975). Nach Gerdes et al. (1987), die Untersuchungen an isolierten Myozyten durchgeführt haben, beträgt die mittlere Querschnittsfläche 200 µm2, die Länge 60 µm. Diese quantitativen Angaben zu den Muskelzellen hängen vom Kontraktionszustand ab (Mall u. Mattfeldt 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Adelstein RS (1983) Regulation of contractile proteins by phosphorylation. J Clin Invest 72:1863–1866

    PubMed  CAS  Google Scholar 

  • Amann K, Greber D, Gharehbaghi H, Wiest G, Ganten U, Lange B, Mattfeldt T, Mall G (1992) Effects of nifedipine and moxonidine on cardiac structures in spontaneously hypertensive rats (SHR-SP) — stereological studies on myocytes, capillaries, arteries and cardiac interstitium. Am J Hypertension 5:76–83

    CAS  Google Scholar 

  • Anversa P, Olivetti G, Melissari M, Loud AV (1980) Stereological measurement of cellular and subcellular hypertrophy and hyperplasia in the papillary muscle of adult rat. J Mol Cell Cardiol 12:781–795

    PubMed  CAS  Google Scholar 

  • Baandrup U, Ledet T, Rasch R (1981) Experimental diabetic cardiopathy preventable by insulin treatment. Lab Invest 45:169–173

    PubMed  CAS  Google Scholar 

  • Bahro M, Pfeifer U (1987) Short-term stimulation by propanolol and verapamil of cardiac cellular autophagy. J Mol Cell Cardiol 19:1169–1178

    PubMed  CAS  Google Scholar 

  • Behrendt H (1977) Effect of anabolic steroids on rat heart muscle cells. Cell Tissue Res 180:303–315

    PubMed  CAS  Google Scholar 

  • Bencosme SA, Berger JM (1972) Specific granules in human and nonhuman vertebrate cardiocytes. In: Bajusz E, Rona G (eds) Recent advances in studies on cardiac structure and metabolism, vol 1. University Park Press, Baltimore, pp 327–399

    Google Scholar 

  • Bennett HS, Goodenough DA (1978) Gap junctions, electrotonic coupling, and intercellular communication. Neuroscience Res Prog Bull 16:520–535

    Google Scholar 

  • Bennett HS, Luft JH, Hampton JC (1959) Morphological classification of vertrebrate blood capillaries. Am J Physiol 196:381–390

    PubMed  CAS  Google Scholar 

  • Bishop SP, Cole CR (1969) Ultrastructural changes in the canine myocardium with right ventricular hypertrophy and congestive heart failure. Lab Invest 20:219–229

    PubMed  CAS  Google Scholar 

  • Bishop SP, Drummond JL (1979) Surface morphology and cell size measurement of isolated rat cardiac myocytes. J Mol Cell Cardiol 11:423–433

    PubMed  CAS  Google Scholar 

  • Bishop SP, Anderson PG, Tucker DC (1990) Morphological development of the rat heart growing in oculo in the absence of hemodynamic work load. Circ Res 66(1): 84–102

    PubMed  CAS  Google Scholar 

  • Bogusch G (1975) Electron microscopic investigation on leptometric fibrils and leptometric complexes in the hen and pigeon heart. J Mol Cell Cardiol 7:733–745

    PubMed  CAS  Google Scholar 

  • Bossen EH, Sommer JR (1984) Comparative stereology of the lizard and frog myocardium. Tissue Cell 16:173–178

    PubMed  CAS  Google Scholar 

  • Bossen EH, Sommer JR, Waugh RA (1978) Comparative stereology of the mouse and finch left ventricle. Tissue Cell 10:773–784

    PubMed  CAS  Google Scholar 

  • Bourdeau-Martini J, Odoroff CL, Honig CR (1974) Dual effect of oxygen on magnitude and uniformity of coronary intercapillary distance. Am J Physiol 226:800–810

    PubMed  CAS  Google Scholar 

  • Breisch EA, White F, Jones HM, Laurs RM (1983) Ultrastructural morphometry of the myocardium of Thunnus alalunga. Cell Tissue Res 233:427–438

    PubMed  CAS  Google Scholar 

  • Brilla CG, Janicki JS, Weber KT (1990) Cardioprotective effects of lisinopril in rats with genetic hypertension. Heart Failure July/Aug:129–137

    Google Scholar 

  • Bruns RR, Palade GE (1968) Studies on blood capillaries. I. General organization of blood capillaries in muscle. J Cell Biol 37:244–276

    Google Scholar 

  • Büchner F, Onishi S (1970) Herzhypertrophie und Herzinsuffizienz in der Sicht der Elektronenmikroskopie. Urban & Schwarzenberg, München Berlin Wien

    Google Scholar 

  • Buja LM, Ferrans VJ, Maron BJ (1974) Intracytoplasmic junctions in cardiac muscle cells. Am J Pathol 74:613–647

    PubMed  CAS  Google Scholar 

  • Caesar R, Edwards GA, Ruska H (1958) Electron microscopy of the impulse conducting system of the sheep heart. Z Zellforsch Mikrosk Anat 48:698–719

    PubMed  CAS  Google Scholar 

  • Canale ED, Campbell GR, Veharo Y, Fujiwara T, Smolich JJ (1983) Sheep cardiac Purkinje fibers: Configurational changes during cardiac cycle. Cell Tissue Res 232:97–110

    PubMed  CAS  Google Scholar 

  • Canale ED, Campbell GR, Smolich JJ, Campell JH (1986) Cardiac muscle. Springer, Beriin Heidelberg New York Tokyo, p 24

    Google Scholar 

  • Caulfield JB, Borg TK (1979) The collagen network of the heart. Lab Invest 40:364–372

    PubMed  CAS  Google Scholar 

  • Chen JJH (1983) A mathematical representation for vessel network II. Theor Biol 104: 647–659

    CAS  Google Scholar 

  • Chilian WM, Wangler RD, Peters KG, Tomanek RJ, Marcus ML (1985) Thyroxine-induced ventricular hypertrophy in the rat. Microvasc Res 30:185–194

    Google Scholar 

  • Cowin P, Mattey D, Garrod D (1984) Distribution of desmosomal components in the tissues of vertebrates, studied by fluoreszent antibody staining. J Cell Science 66: 119–132

    PubMed  CAS  Google Scholar 

  • Dämmrich J, Pfeiffer U (1983) Cardiac hypertrophy in rats after supravalvular aortic constriction. Virchows Arch (A) 43:265–307

    Google Scholar 

  • Dalen H (1989) An ultrastructural study of the hypertrophied human papillary muscle cell with special emphasis on specific staining patterns., mitochondrial projections and associations between mitochondria and SR. Virchows Arch (A) 414:187–198

    CAS  Google Scholar 

  • Danto SI, Fischman DA (1984) Immuncytochemical analysis of intermediate filaments in embryonic heart cells with monoclonal antibodies to desmin. J Cell Biol 98:2179–2191

    PubMed  CAS  Google Scholar 

  • Dewey MM (1969) The structure and function of the intercallated disc in vertebrate cardiac muscle. Experimentia (Suppl) 15:10–28

    CAS  Google Scholar 

  • Doering CW, Jalil JE, Janicki JS, Pick R, Aghili S, Abrahams C, Weber KT (1988) Collagen network remodeling and diastolic stiffness of the rat left ventricle with pressure overload hypertrophy. Cardiovasc Res 22:686–695

    PubMed  CAS  Google Scholar 

  • Dulhunty AF, Franzini-Armstrong C (1975) The relative contributions of the folds and caveolae to the surface membran of frog sceletal muscle fibers at different sarcomere lengths. J Physiol (Lond) 250:513–539

    CAS  Google Scholar 

  • Eghbali M, Pharm D (1990) Collagen gene expression and molecular basis of fibrosis in the myocardium. Heart Failure July/Aug:125–128

    Google Scholar 

  • Eisenberg R, Gilai A (1979) Structural changes in single muscle fibers after stimulation at low frequency. J Gen Physiol 74:1–16

    PubMed  CAS  Google Scholar 

  • Fabiato A (1983) Calcium-induced release of calcium from the cardiac sarcoplamatic reticulum. Am J Physiol 245:C1–C14

    PubMed  CAS  Google Scholar 

  • Factor SM, Minase T, Sonnenblick EH (1980) Clinical and morphological features of human hypertensive-diabetic cardiomyopathy. Am Heart J 99:446–458

    PubMed  CAS  Google Scholar 

  • Factor SM, Flomenbaum M, Zhao MJ, Eng C, Robinson TF (1988) The effect of acutley increased ventricular cavity pressure on intrinsic myocardial connective tissue. J Am Coll Cardiol 12:1582–1589

    PubMed  CAS  Google Scholar 

  • Fahimi HD, Kino M, Hicks L, Thorp KA, Abelman WH (1979) Increased myocardial catalase release in rats fed ethanol. Am J Pathol 96:373–390

    PubMed  CAS  Google Scholar 

  • Fawcett DW, McNutt NS (1969) The ultrastructure of the cat myocardium. I. Ventricular papillary muscle. J Cell Biol 42:1–45

    PubMed  CAS  Google Scholar 

  • Ferrans VJ, Roberts WC (1973) Intermyofibrillar and nuclear-myofibrillar connections in human and canine myocardium. An ultrastructural study. J Mol Cell Cardiol 5: 247–257

    PubMed  CAS  Google Scholar 

  • Ferrans VJ, Thiedemann KU (1983) Ultrastructure of the normal heart. In: Silver MD (ed) Cardiovascular pathology, vol 1. Churchill Livingstone, New York, pp 31–86

    Google Scholar 

  • Fleischer M, Wippo W, Themann H, Achatzky RS (1980) Morphometric analysis of human myocardial left ventricles with mitral insufficiency. Virchows Archiv (A) 389:205–210

    CAS  Google Scholar 

  • Forbes MS, Sperelakis N (1971) Ultrastructure of lizard ventricular muscle. J Ultrastruct Res 34:439–451

    PubMed  CAS  Google Scholar 

  • Forbes MS, Sperelakis N (1973) A labyrinthine structure formed from a transverse tubule of mouse ventricular myocardium. J Cell Biol 56:865–869

    PubMed  CAS  Google Scholar 

  • Forbes MS, Sperelakis N (1980) Structures located at the level of Z bands in mouse ventricular myocardial cells. Tissue Cell 12:467–489

    PubMed  CAS  Google Scholar 

  • Forbes MS, Sperelakis N (1982) Association between mitochondria and gap junctions in mammalian myocardial cells. Tissue Cell 14:25–37

    PubMed  CAS  Google Scholar 

  • Forbes MS, Sperelakis N (1983) The membrane systems and cytoskeletal elements of mammalian myocardial cells. In: Dowben RM, Shay JW (eds) Cell and muscle motility, vol 3. Plenium Publishing, New York London, pp 89–155

    Google Scholar 

  • Forbes MS, Sperelakis N (1984) Ultrastructure of mammalian cardiac muscle. In: Sperelakis N (ed) Physiology and pathophysiology of the heart. Martinus Nijhoff, Boston/The Hague, pp 3–42

    Google Scholar 

  • Forssmann WG, Giradier L (1966) Untersuchungen des Rattenherzmuskels mit besonderer Berücksichtigung des sarkoplasmatischen Retikulums. Z Zellforsch Mikroskop Anat 72:249–275

    CAS  Google Scholar 

  • Forssmann WG, Giradier L (1970) A study of the T system in rat heart. J Cell Biol 44:1–19

    PubMed  CAS  Google Scholar 

  • Forssmann WG (1976) Die normale Gefäßwand und ihre Transportphänomene. Med Welt 27(35):1606–1610

    PubMed  CAS  Google Scholar 

  • Forssmann WG, Birr C, Carlquist M, Christmann M, Finke R, Henschen A, Hock D, Kirchheim Kreye V, Lottspeich F, Metz J, Mutt V, Reinecke M (1984) The auricular myocardiocytes of the heart constitute an endocrine organ: Characterisation of a porcine cardiac peptide hormone, Cardiodilatin-126. Cell Tissue Res 238:425–430

    PubMed  CAS  Google Scholar 

  • Frank JS, Langer GA, Nudd LM, Seraydarian K (1977) The myocardial cell surface, its histochemistry, and the effect of sialic acid calcium removal on its structure and cellular ionic exchange. Circ Res 41:702–714

    PubMed  CAS  Google Scholar 

  • Franke WW, Moll R, Schiller DL, Schmid E, Katrenbeck J, Mueller H (1982) Desmopla-kins of epithelial and myocardial desmosomes are immunologically and biochemically related. Differentiation 23:115–127

    PubMed  CAS  Google Scholar 

  • Gabella G (1973) Fine structure of smooth muscle. Phil Trans R Soc Ser B (Lond) 265: 7–16

    CAS  Google Scholar 

  • Gabella G (1978) Inpocketings of the cell membrane (caveolae) in the rat myocardium. J Ultrastruct Res 65:135–147

    PubMed  CAS  Google Scholar 

  • Geer JC, Sandford PB, James TN (1979) Pathology of small intramural coronary arteries. Pathol Ann 14:125–154

    Google Scholar 

  • Gerdes AM, Moore JA, Hains JM (1987) Regional changes in myocyte size and number in propanolol-treated hyperthyreoid rats. Lab Invest 57:708–713

    PubMed  CAS  Google Scholar 

  • Giradier L, Pollet M (1964) Demonstration de la continuitè entre l’espace interstitiel et la lumière de canaux intercellulaires dans le myocard de rat. Helvet Physiolo Pharmacolog Acta 22:C72–C73

    Google Scholar 

  • Godlewsky E (1902) Die Entwicklung des Skelett- und Herzmuskelgewebes der Säugetiere. Arch Mikrosk Anat 60:111–156

    Google Scholar 

  • Goldstein MA, Schroeter JP, Sass RL (1977) Optical diffraction of the Z lattice in canine cardiac muscle. J Cell Biol 75:818–836

    PubMed  CAS  Google Scholar 

  • Goodenough DA, Revel JP (1970) A fine structural analysis of intercellular junctions in the mouse liver. J Cell Biol 45:272–290

    PubMed  CAS  Google Scholar 

  • Goodenough DA, Stoeckenius W (1972) The isolation of mouse hepatocyte gap junctions. Preliminary chemical characterization and X-ray diffraction. J Cell Biol 54:646–656

    PubMed  CAS  Google Scholar 

  • Goodenough DA, Paul DL, Culbert KE (1978) Correlative gap junction ultrastructure. Birth Defects 14(2):83–97

    PubMed  CAS  Google Scholar 

  • Granger BL, Lazarides E (1978) The existence of an insoluble Z disc scaffold in chicken skeletal muscle. Cell 15:1253–1268

    PubMed  CAS  Google Scholar 

  • Hagopian M, Nunez EA (1972) Sarcolemmal scalloping at short sarcomer length with incidental observations on the T tubules. J Cell Biol 53:252–258

    PubMed  CAS  Google Scholar 

  • Hammersen F (1971) Anatomie der terminalen Strombahn — Muster, Feinbau, Funktion. Urban & Schwarzenberg, München Berlin Wien

    Google Scholar 

  • Heidenhain M (1901) Über die Struktur des menschlichen Herzmuskels. Anat Anz 20: 33–42

    Google Scholar 

  • Henquell L, Odoroff CL, Honig CR (1977) Intercapillary distance and capillary reserve in hypertrophied rat hearts beating in situ. Circ Res 41:400–408

    PubMed  CAS  Google Scholar 

  • Herbst WM, Mall G, Weers J, Mattfeldt T, Forssmann WG (1989) Combined quantitative morphological and biochemical study on atrial granules (AG). In: Forssmann WG (ed) Functional morphology of the endocrine heart. Steinkopff, Darmstadt

    Google Scholar 

  • Hirakow R, Gotoh T (1975) A quantitative ultrastructural study on developing rat heart. In: Lieberman M, Sano T (eds) Developmental and physiological correlates of cardiac muscle. Raven Press, New York, pp 37–49

    Google Scholar 

  • Hirakow R, Krause WJ (1980) Postnatal differentation of ventricular myocardial cells of the opossum (Didelphis virginiana) and T-tubule formation. Cell Tissue Res 210: 95–100

    PubMed  CAS  Google Scholar 

  • Hoh JFY, McGrath PA, Hale PT (1977) Electrophoretic analysis of multiple forms of rat cardiac myosin: Effects of hypophysectomie and thyroxine replacement. J Mol Cell Cardiol 10:1053–1076

    Google Scholar 

  • Hoh JFY, Yeoh G, Thomas M, Higginbottom L (1979) Structural differences in the heavy chains of rat ventricular myosin isoenzymes. FEBS Lett 97:330–334

    PubMed  CAS  Google Scholar 

  • Hort W (1955) Quantitative Untersuchungen über die Kapillarisierung des Herzmuskels im Erwachsenen- und Greisenalter bei Hypertrophie und Hyperplasie. Virchows Arch 327:560

    PubMed  CAS  Google Scholar 

  • Hossler FE, Douglas JE, Douglas LE (1986) Anatomy and morphometry of myocardial capillaries studied with vascular corrosion casting and scanning electron microscopy: A method for rat heart. Scan Electr Microsc 4:1496–1474

    Google Scholar 

  • Hoyle G (1983) Muscles and their neural control. Wiley & Sons, New York

    Google Scholar 

  • Hudlicka O (1982) Growth of capillaries in skeletal and cardiac muscle. Circ Res 50(4): 451–461

    PubMed  CAS  Google Scholar 

  • Huxley HE (1969) The mechanism of muscular contraction. Science 164:1356–1360

    PubMed  CAS  Google Scholar 

  • Huxley HE, Hanson J (1954) Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature 173:973–976

    PubMed  CAS  Google Scholar 

  • Huxley AF, Niedergerke R (1954) Interference microscopy of living muscle fibres. Nature 173:971–973

    PubMed  CAS  Google Scholar 

  • Jalil JE, Doering CW, Janicki JS, Pick R, Clark WA, Abrahams C, Weber KT (1988) Structural vs contractile protein remodeling and myocardial stiffness in hypertrophied rat left ventricle. J Mol Cell Cardiol 20:1179–1187

    PubMed  CAS  Google Scholar 

  • Jalil JE, Doering CW, Janicki JS, Pick R, Shroff SG, Weber KT (1989) Fibrillar collagen and myocardial stiffness in the intact hypertrophied rat left ventricle. Circ Res 64: 1041–1050

    PubMed  CAS  Google Scholar 

  • James TN (1977) Small arteries of the heart. Circulation 56:1–4

    Google Scholar 

  • Jennings RB, Ganote CE (1976) Mitochondrial structure and function in acute myocardial ischemic injury. Circ Res (Suppl 1) 38:80–91

    Google Scholar 

  • Johnson EA, Sommer JR (1967) A strand of cardiac muscle: Its ultrastructure and the electrophysiological implications of its geometry. J Cell Biol 33:103–129

    PubMed  CAS  Google Scholar 

  • Joyce NC, Camilli P de, Boyles J (1984) Pericytes like vascular smooth muscle cells are immunocytochemically positive for cyclic GMP-dependent protein kinase. Microvasc Res 28:206–219

    PubMed  CAS  Google Scholar 

  • Kartenbeck J, Franke WW, Moser JG, Stoffels U (1983) Specific attachement of desmin to desmosomal plaques in cardiac myocytes. EMBO J 2:735–742

    PubMed  CAS  Google Scholar 

  • Kawamura K, James TN (1971) Comparative ultrastructure of cellular junctions in working myocardium and the conducting system under normal and pathologic conditions. J Mol Cell Cardiol 3:31–60

    PubMed  CAS  Google Scholar 

  • Kefalides NA, Alpert R, Clark CC (1979) Biochemistry and metabolism of basement membranes. Int Rev Cytol 61:167–228

    PubMed  CAS  Google Scholar 

  • Kelly DE (1969) The fine structure of skeletal muscle triad junctions. J Ultrastruct Res 29:37–49

    PubMed  CAS  Google Scholar 

  • Krayenbühl HP, Hess OM, Monrad ES, Schneider J, Mall G, Turina M (1989) Left ventricular myocardial structure in aortic valve disease before, intermediate and late after aortic valve replacement. Circulation 79:744–755

    Google Scholar 

  • Kunkel B, Schneider M, Kober WD, Hopf R, Kaltenbach M (1982) Die Morphologie der Myokardbiopsie und ihre klinische Bedeutung. Z Kardiol 71:787–892

    PubMed  CAS  Google Scholar 

  • Lang RE, Tholken H, Ganten D, Luft FC, Ruskoaho H, Unger TH (1985) Atrial natriuretic factor — a circulating hormone stimulated by volume loading. Nature 314:264–266

    PubMed  CAS  Google Scholar 

  • Langer GA (1984) Calcium at the sarcolemma. J Mol Cell Cardiol 16:147–153

    PubMed  CAS  Google Scholar 

  • Langer GA, Frank JS, Nudd LM, Seraydarian K (1976) Siliac acid: effect of removal on calcium exchangeability of cultured heart cells. Science 193:1013–1015

    PubMed  CAS  Google Scholar 

  • Langer GA, Frank JS, Philipson KD (1982) Ultrastructure and calcium exchange of the sarcolemma, sarcoplasmic reticulum and mitochondria of the myocardium. Pharmacol Ther 16:331–376

    PubMed  CAS  Google Scholar 

  • Lazarides E (1980) Intermediate filaments as mechanical integrators of cellular space. Nature 283:249–255

    PubMed  CAS  Google Scholar 

  • Lazarides E, Granger BL, Gard DL, O’Connor CM, Breckler J, Price M, Danto SI (1982) Desmin and Vimentin containing-filaments and their role in the assembly of the Z disc in muscle cells. Cold Spring Harbor Symposium on Quantitative Biology 46:351–378

    Google Scholar 

  • Leeson TS (1978) The transverse tubular (T) system of rat cardiac muscle fibers as demonstrated by tannic acid mordanting. Can J Zool 56:1906–1916

    PubMed  CAS  Google Scholar 

  • Leeson TS (1980) T-tubules, couplings and myofibrillar arrangements in rat atrial myocardium. Acta Anat 108:374–388

    PubMed  CAS  Google Scholar 

  • Leeson TS (1981) The fine structure of snake myocardium. Acta Anat 109:252–269

    PubMed  CAS  Google Scholar 

  • Legato MJ, Spiro D, Langer GA (1968) Ultrastructural alterations produced in mammalian myocardium by variation in perfusate ionic composition. J Cell Biol 37:1–12

    PubMed  CAS  Google Scholar 

  • Levin KR, Page E (1980) Quantitative studies on plasmalemmal folds and caveolae of rabbit ventricular myocardial cells. Circ Res 46:244–255

    PubMed  CAS  Google Scholar 

  • Manjunath CK, Goings GE, Page E (1984) Cytoplasmic surface and intramembrane components of rat heart gap junctional proteins. Am J Physiol 246:H865–H875

    PubMed  CAS  Google Scholar 

  • Mall G, Mattfeldt T (1990) Capillary growth patterns in cardiac hypertrophy and normal growth — a stereological study on papillary muscles. In: Jacob R, Seipel L, Zucker IH (eds) Cardiac dilatation. 51–67

    Google Scholar 

  • Mall G, Kayser K, Rossner JA (1977) The loss of membrane images from oblique sectioning of biological membranes and the availability of morphometric princip demonstrated by the examination of heart muscle mitochondria. Mikroskopie (Wien) 33:246–254

    CAS  Google Scholar 

  • Mall G, Reinhard H, Kayser K, Rossner JA (1978) An effective morphometric principles method for electron microscopic study on papillary muscles. Virchows Arch (A) 379:219–228

    CAS  Google Scholar 

  • Mall G, Reinhard H, Stopp D, Rossner JA (1980 a) Morphometric observations on the rat heart after high-dose treatment with Cortisol. Virchows Arch (A) 385:169–180

    CAS  Google Scholar 

  • Mall G, Mattfeldt T, Volk B (1980 b) Ultrastructural morphometric study on the rat heart after chronic ethanol feeding. Virchows Arch (A) 389:59–77

    CAS  Google Scholar 

  • Mall G, Mattfeldt T, Rieger P, Volk B, Frolov VA (1982 a) Morphometric analysis of the rabbit myocardium after chronic ethanol feeding — early capillary changes. Basic Res Cardiol 77:57–67

    PubMed  CAS  Google Scholar 

  • Mall G, Schwarz F, Derks H (1982 b) Clinicopathologic correlations in congestive cardiomyopathy — a study on endomyocardial biopsies. Virchows Arch (A) 398:67–82

    Google Scholar 

  • Mall G, Mattfeldt T, Möbius HJ, Leonhard R (1986) Stereological study on the rat heart in chronic alimentary thiamine deficiency — absence of myocardial changes despite starvation. J Mol Cell Cardiol 18:193–201

    Google Scholar 

  • Mall G, Schikora I, Mattfeldt T, Bodle R (1987 a) Dipyridamole induced neoformation of capillaries in the rat heart. Quantitative stereological study on papillary muscle. Lab Invest 57:86–93

    PubMed  CAS  Google Scholar 

  • Mall G, Klingel K, Baust H, Hasslacher C, Mann J, Mattfeldt T (1987 b) Synergistic effects of diabetes mellitus and renovascular hypertension on rat heart-stereological investigations on papillary muscle. Virchows Arch (A) 411:531–542

    CAS  Google Scholar 

  • Mall G, Rambausek M, Neumeister A, Kollmar S, Vetterlein F, Ritz E (1988) Myocardial interstitial fibrosis in experimental uremia-implications for cardiac compliance. Kidney Int 33:804–811

    PubMed  CAS  Google Scholar 

  • Mall G, Rambausek M, Gretz N, Ikker U, Zimmer G, Klingel K, Schneider J, Jansen HH, Ritz E (1989) Interstitielle Myokardfibrose bei chronischer Urämie — Ursache der diastolischen Funktionsstörung bei Dialyse-Patienten? Pathologe 10:200–205

    PubMed  CAS  Google Scholar 

  • Mall G, Zimmer G, Baden S, Mattfeldt T (1990) Capillary neoformation in the rat heart — stereological studies on papillary muscles in hypertrophy and physiologic growth. Basic Res Cardiol 85:531–540

    PubMed  CAS  Google Scholar 

  • Mall G, Huther W, Schneider J, Lundin P, Ritz E (1990) Diffuse intermyocardiocytic fibrosis in uraemic patients. Nephrol Dial Transplant 5:39–44

    PubMed  CAS  Google Scholar 

  • Manjunath CK, Goings GE, Page E (1984) Cytoplasmic surface and intramembrane components of rat heart gap junctional proteins. Am J Physiol 246: H 865–H 875

    CAS  Google Scholar 

  • Maron BJ, Ferrans VJ, Roberts WC (1975) Ultrastructural features of degenerated cardiac muscle cells in patients with cardiac hypertrophy. Am J Pathol 79:387–434

    PubMed  CAS  Google Scholar 

  • Martinez-Palomo A, Alanis J (1980) The amphibian and reptilian hearts: Impulse propagation and ultrastructure. In: Bourne GH (ed) Hearts-like organs, vol. 1. Academic Press, New York, pp 171–124

    Google Scholar 

  • Martinosi AN (1984) Mechanism of calcium release from sarcoplasmic reticulum of skeletal muscle. Physiol Rev 64:1240–1320

    Google Scholar 

  • Mattfeldt T, Mall G(1984) Estimation of length and surface of anisotropic capillaries. J Microsc 135:181–190

    PubMed  CAS  Google Scholar 

  • Mattfeldt T, Mall G (1987) Growth of capillaries and myocardial cells in the normal rat heart. J Mol Cell Cardiol 19:1237–1246

    PubMed  CAS  Google Scholar 

  • Mattfeldt T, Krämer KL, Zeitz R, Mall G (1986) Stereology of myocardial hypertrophy induced by physical exercise. Virchows Arch (A) 409:473–485

    CAS  Google Scholar 

  • Mattfeldt T, Drautz M, Mall G (1989) Experimentelle Herzhypertrophie durch Thyroxin-gabe. Pathologe 10(4):206–211

    PubMed  CAS  Google Scholar 

  • McCallister LP, Daiello DC, Tyers GFO (1978) Morphometric observations of the effects of normothermic ischemic arrest on dog myocardial ultrastructure. J Mol Cell Cardiol 10:67–80

    PubMed  CAS  Google Scholar 

  • McDonnell TJ, Oberpriller JO (1983) The ultrastructure of the atrium in the adult newt Notophthalmus viridescens (Amphibia, Salamandriae). J Morphol 175:235–251

    Google Scholar 

  • McNutt NS (1975) Ultrastructure of the myocardial sarcolemma. Circ Res 37:1–13

    PubMed  CAS  Google Scholar 

  • McNutt NS, Weinstein RS (1970) The ultrastructure of the nexus: A correlated thin-section and freeze-cleave study. J Cell Biol 47:666–688

    PubMed  CAS  Google Scholar 

  • Mello WC de, Motta E, Chapeau M (1969) A Studie of healing over of myocardial cells of toads. Circ Res 24:475–487

    PubMed  Google Scholar 

  • Mello WC de (1982 a) Cell-to-cell communicatin in heart and other tissues. Prog Biophys Mol Biol 39:147–182

    PubMed  Google Scholar 

  • Mello WC de (1982b) Intercellular communication in cardiac muscle. Circ Res 51:1–9

    Google Scholar 

  • Mueller H, Franke WW (1983) Biochemical and immunological characterization of desmoplakins I and II, the mayor polypeptides of the desmosomal plaques. J Mol Biol 163:647–671

    PubMed  CAS  Google Scholar 

  • Muir AR (1965) Further observations on the cellular structure of cardiac muscle. J Anat 99:27–46

    PubMed  CAS  Google Scholar 

  • Myklebust R, Jensen H (1978) Leptomere fibrils and T-tubule desmosomes in the Z-band region of the mouse heart papillary muscle. Cell Tissue Res 188:205–215

    PubMed  CAS  Google Scholar 

  • Nusshaag A (1990) Morphometrische Untersuchungen am Herzmuskel des Menschen bei Hypertrophie und Hypertrophieregression. Med Inaug Diss, Universität Heidelberg

    Google Scholar 

  • Page E (1978) Quantitative ultrastructural analysis in cardiac membrane physiology. Am J Physiol 235:C147–C158

    PubMed  CAS  Google Scholar 

  • Page E, Fozzard HA (1973) Capacitive, resistive and syncytial properties of heart muscle — Ultrastructural and physiological considerations. In: Bourne GH (ed) The structure and function of muscle. Structure, 2nd edn, vol II. Academic Press, New York, pp 91–158

    Google Scholar 

  • Page E, McCallister LP (1973 a) Studies on the intercalated disc of rat ventricular myocardial cells. J Ultrastruct Res 43:388–411

    PubMed  CAS  Google Scholar 

  • Page E, McCallister LP (1973b) Quantitative electron microscopic description of heart muscle cells: Application to normal, hypertrophied and thyroxin-stimulated hearts. Am J Cardiol 31:172–181

    CAS  Google Scholar 

  • Page E, Shibata Y (1981) Permeable junctions between cardiac cells. Ann Rev Physiol 43:431–441

    CAS  Google Scholar 

  • Page E, McCallister LP, Power B (1971) Stereological measurements of cardiac ultrastructures implicated in excitation — contraction couphng sarcotubulus and T-system. Proc Natl Acad Sci USA 68:1465–1466

    PubMed  CAS  Google Scholar 

  • Pardo JV, D’Angelo Siciliano J, Craig SW (1983) Vinculin is a component of an extensive network of myofibril-sarcolemma attachment regions in cardiac muscle fibers. J Cell Biol 97:1081–1088

    PubMed  CAS  Google Scholar 

  • Peachey LD, Franzini-Armstrong C (1983) Structure and function of membrane systems of skeletal muscle cells. In: Peachey LD (ed) Handbook of physiology, sect 10: Sceletal muscle. American Physiological Society, Bethesda,Maryland, pp 23–71

    Google Scholar 

  • Poche R, Linder E (1955) Untersuchungen zur Frage des Glanzstreifens des Herzmuskelgewebes beim Warmblüter und beim Kaltblüter. Z Zellforsch 43:104–120

    PubMed  CAS  Google Scholar 

  • Porte A, Stoeckel M-E, Sacrez A, Batzenschlager A (1980) Unusual familial cardiomyopathy with storage of intermediate filaments in the cardiac muscular cells. Virchows Arch (A) 386:43–58

    CAS  Google Scholar 

  • Porter KR, Palade GE (1957) Studies on the endoplasmic reticulum. III. Its form and distribution in striated muscle cells. J Biophys Biochem Cytol 3:269–300

    PubMed  CAS  Google Scholar 

  • Rayns DG, Simpson FO, Bertaud WS (1968) Surface features of striated muscle. I. Guinea-pig cardiac muscle. J Cell Sci 3:467–474

    PubMed  CAS  Google Scholar 

  • Rakusan K (1971) Quantitative morphology of capillaries of the heart. Methods Arch Exp Pathol 5:272–286

    CAS  Google Scholar 

  • Regan TJ, Ettinger PO, Khan MI, Jesrani MU, Lyons M, Oldewurtel HA, Weber M (1974) Altered myocardial function and metabolism in chronic diabetes mellitus without ischemia in dogs. Circulation Res 35:222–237

    CAS  Google Scholar 

  • Revel JP, Karnovsky MJ (1967) Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J Cell Biol 33:C7–C12

    PubMed  CAS  Google Scholar 

  • Rhodin JAG (1967) The ultrastructure of mammalian arterioles and precapillary shincters. J Ultrastruct Res 18:181–223

    PubMed  CAS  Google Scholar 

  • Roberts JT, Wearn JT (1941) Quantitative changes in capillary-muscle relationship in human hearts during normal growth and hypertrophy. Am Heart J 21:617–633

    Google Scholar 

  • Robertson JD (1957) New observations on the ultrastructure of membranes of frog peripheral nerve fibers. J Biophys Biochem Cytol 3:1043–1048

    PubMed  CAS  Google Scholar 

  • Robertson JD (1958) The cell membrane concept. J Physiol (Lond) 140:58P–59P

    Google Scholar 

  • Robinson TF (1983) The physiological relationship between connective tissue and contractile filaments in heart muscle. Einstein Q 1:121–127

    Google Scholar 

  • Robinson TF, Winegrad S (1979) The measurement and dynamic implication of thin filament lengths in heart muscle. J Physiol (Lond) 286:607–619

    CAS  Google Scholar 

  • Robinson TF, Cohen-Gould L, Factor SM (1983) The sceletal frame work of mammalian heart muscle: Arrangement of inter- and pericellular connective tissue structures. Lab Invest 49:482–498

    PubMed  CAS  Google Scholar 

  • Robinson TF, Factor SM, Capasso JM, Wittenberg BA, Blumfenfeld OO, Seifter S (1987) Morphology, composition and function of struts between cardial myocytes of rat and hamster. Cell Tissue Res 249:247–255

    PubMed  CAS  Google Scholar 

  • Robinson TF, Geraci MA, Sonnenblick EH, Factor SM (1988) Coiled perimysial fibers of papillary muscle in rat heart: morphology, distribution and changes in configuration. Circ Res 63:577–592

    PubMed  CAS  Google Scholar 

  • Saetersdal TS, Myklebust R (1975) Ultrastructure of the pigeon papillary muscle with special reference to the sarcoplasmic reticulum. J Mol Cell Cardiol 7:543–551

    Google Scholar 

  • Samuel JL, Rappaport L, Mercadier J-J, Lompre A-M, Sartore S, Triban C, Schiaffino S, Schwartz K (1983) Distribution of myosin isozymes within single cardiac cells. An immunohistochemical study. Circ Res 52:200–209

    PubMed  CAS  Google Scholar 

  • Scales DJ (1981) Aspects of the mammalian sarcotubular system revealed by freeze fracture electron microscopy. J Mol Cell Cardiol 13:373–380

    PubMed  CAS  Google Scholar 

  • Scales DJ (1983) III. Three-dimensional electron microscopy of mammalian cardiac sarcoplasmic reticulum at 80 kV. J Ultrastruct Res 83:1–9

    PubMed  CAS  Google Scholar 

  • Schaper J, Hehrlein F, Schlepper M, Thiedemann KU (1977) Ultrastructural alterations during ischemia and reperfusion in human hearts during cardiac surgery. J Mol Cell Cardiol 9:175–189

    PubMed  CAS  Google Scholar 

  • Schaper J, Froede TA, Hein ST, Buck A, Hashizume H, Speiser B, Friedl A, Bleese N (1991) Impairment of the myocardial ultrastructure and changes of the cytoskeleton in dilated cardiomyopathy. Circulation 83(2):504–514

    PubMed  CAS  Google Scholar 

  • Schmiedl A, Schnabel PhA, Mall G, Gebhard MM, Hummemann DH, Richter J, Bretschneider HJ (1990) The surface to volume ratio of mitochondria, a suitable parameter for evaluating mitochondrial swelling. Virchows Archiv (A) 416:305–315

    CAS  Google Scholar 

  • Schmidt-Schönbein GW, Zweifach BW, Kovalcheck S (1977) The application of stereo-logical principles to morphometry of the microcirculation in different tissues. Microvasc Res 14:303–317

    Google Scholar 

  • Schwarz F, Kittstein D, Winkler B, Schaper J (1980) Quantitative ultrastructure of the myocardium in chronic aortic valve diasease. Basic Res Cardiol 75:109–117

    PubMed  CAS  Google Scholar 

  • Schwarzkopff B, Deckert M, Frenzel H (1987) Strukturanomalien der Mitochondrien des Herzmuskels beim Kearns-Sayre-Syndrom. Z Kardiol 18 (Abstract)

    Google Scholar 

  • Shimada T, Horita K, Murakami M, Ogura R (1984) Morphological studies of different mitochondrial populations in monkey myocardial cells. Cell Tissue Res 238:577–582

    PubMed  CAS  Google Scholar 

  • Siemens I, Simon T, Hamberger U, Greber D, Wiest G, Ostertag-Körner D, Mall G, Pedal I (1991) Morphometric investigation of coronary arteries and capillaries of myocardium. Evidence for early sex and age related changes. Proc 7th Int. Dresden Lipid Symposium Fischer, Jena, pp 305–307

    Google Scholar 

  • Simionescu M, Simionescu N (1984) Ultrastructure of the microvascular wall. In: Eugene M, Renken C, Charles M (eds) Handbook of Physiology: The cardiovascular system, vol 4 (Microcirculation Pt 1), American Physiological Society, Bethesda,Maryland

    Google Scholar 

  • Simionescu N, Simionescu M, Palade GE (1978) Structural basis of permeability in sequential segments of the micro vasculature of the diaphragm. II. Pathways by microperoxydase across the endothelium. Microvasc Res 15:17–36

    PubMed  CAS  Google Scholar 

  • Simpson FO, Rayns DG, Ledingham JM (1973) The ultrastructure of ventricular and atrial myocardium. In: Challice CE, Viragh S (eds) Ultrastructure of the mammalian heart. Academic Press, New York, pp 1–41

    Google Scholar 

  • Sjöstrand FS, Anderson CE, Dewey MM (1958) Ultrastructure of the intercalated disc of frog, mouse and guinea-pig cardiac muscle. J Ultrastruct Res 1:271–287

    PubMed  Google Scholar 

  • Sjöstrand F, Allen BS, Buckberg GD, Okamoto F, Young H, Bugyi H, Beyersdorf RJ, Barnard RJ, Leaf J (1986) Studies of controlled reperfusion after ischemia IV. Electron microscopic studies: Importance of embedding techniques in quantitative evaluation of cardiac mitochondrial structure during regional ischemia and reperfusion. J Thorac Cardiovas Surg 92:513–524

    Google Scholar 

  • Skepper JN, Woodward JM, Navaratnam V (1988) Immunocytochemical localization of natriuretic peptide sequences in the human right auricle. J Moll Cell Cardiol 20: 343–351

    CAS  Google Scholar 

  • Smith HE, Page E (1976) Morphometry of rat heart mitochondrial subcompartements and membranes: Application to myocardial cell atrophy after hypophysectomy. J Ultra-struct Res 55:31–41

    CAS  Google Scholar 

  • Sommer JR (1982) Ultrastructural considerations concerning cardiac muscle. J Mol Cell Cardiol 15 (Suppl 3): 77–83

    Google Scholar 

  • Sommer JR, Johnson EA (1968) Cardiac muscle. A comparative study of Purkinje fibers and ventricular fibers. J Cell Biol 36:497–526

    PubMed  CAS  Google Scholar 

  • Sommer JR, Johnson EA (1969) Cardiac muscle. A comparative ultrastructural study with special reference to frog and chicken hearts. Z Zellforsch Mikrosk Anat 98:437–468

    PubMed  CAS  Google Scholar 

  • Sommer JR, Johnson EA (1979) Ultrastructure of cardiac muscle. In: Berne RM, Sperelakis N, Geiger SR (eds) Handbook of physiology, sect 2. The cardiovascular system, vol 1, chap 5. American Physiological Society, Bethesda,Maryland, pp 113–186

    Google Scholar 

  • Sommer JR, Waugh RA (1979) The ultrastructure of mammalian cardiac muscle cell — with special emphasis on the tubular membrane systems. Am J Pathol 82:191–232

    Google Scholar 

  • Sperelakis N, Forbes MS, Rubio R (1974) The tubular systems of myocardial cells: Ultrastructure and possible function. In: Dhalla NS (ed) Myocardial biology. Recent advances in studies on cardiac structure and metabolism, vol 4. University Park Press, Baltimore, pp 163–194

    Google Scholar 

  • Spira ME (1971) The nexus in the intercalated disc of the canine heart: quantitative data for an estimation of its resistance. J Ultrastruct Res 34:409–425

    PubMed  CAS  Google Scholar 

  • Stoker ME, Gerdes AM, May JM (1982) Regional differences in capillary density and myocyte size in the normal human heart. Anat Rec 202:187–191

    PubMed  CAS  Google Scholar 

  • Theron JJ, Biagio R, Meyer AC, Boekkooi S (1978) Ultrastructural observations on the maturation and secretion of granules in atrial myocardium. J Mol Cell Cardiol 10: 567–572

    PubMed  CAS  Google Scholar 

  • Thiedemann KU, Ferrans VJ (1976) Ultrastructure of sarcoplasmic reticulum in atrial myocardium of patients with mitral valvular disease. Am J Pathol 83:1–38

    Google Scholar 

  • Thiedemann KU, Ferrans VJ (1977) Left atrial ultrastructure in mitral valvular disease. Am J Pathol 89:575–604

    PubMed  CAS  Google Scholar 

  • Thiedemann KU, Holubarsch C, Medugorac I, Jacob R (1983) Connective tissue content and myocardial stiffness in pressure overload hypertrophy. A combined study of morphologic, morphometric, biochemical, and mechanical parameters. Basic Res Cardiol 78:140–155

    PubMed  CAS  Google Scholar 

  • Thoenes W, Ruska H (1960) Über „Leptomere Myofibrillen“ in der Herzmuskelzelle. Z Zellforsch Mikrosk Anat 51:560–570

    PubMed  CAS  Google Scholar 

  • Thornell L-E, Eriksson A (1981) Filament system in the Purkinje fibers of the heart. Am J Physiol 241:H291–H305

    PubMed  CAS  Google Scholar 

  • Thornell L-E, Johanssen B, Eriksson A, Lehto V-P, Virtanen I (1984) Intermediate filament and associated proteins in the human heart: An immunofluorescence of normal and pathological hearts. Eur Heart J (Suppl) 5:F231/F241

    Google Scholar 

  • Tidball JG, Smith R, Shattock MJ, Bers DM (1988) Differences in action potentials configuration inventricular trabeculae correlate with differences in density of transverse tubule-sarcoplasmic reticulum couplings. J Mol Cell Cardiol 20:539–546

    PubMed  CAS  Google Scholar 

  • Tilton RG, Kilo C, Williamson JR, Murch DW (1979) Differences in pericyte contractile function in rat cardiac and sceletal muscle micro vasculatures. Microvasc Res 18: 336–352

    PubMed  CAS  Google Scholar 

  • Timpl R, Rhode H, Robey PG, Rennard SI, Foidart J-M, Martin GR (1979) Laminin — a glycoprotein from basement membranes. J Biol Chem 254:9933–9937

    PubMed  CAS  Google Scholar 

  • Tokuyasu KT, Dutton AH, Singer SJ (1983) Immunoelectron microscopic studies of desmin (skeletal) localization and filament organization in chicken cardiac muscle. J Cell Biol 96:1736–1742

    PubMed  CAS  Google Scholar 

  • Tornling G, Unge G, Skoog L, Ljungqvist A, Carlsson S, Adolfsson J (1978) Proliferative activity of myocardial capillary well cells in dipyridamole-treated rats. Cardiovasc Res 12:692

    PubMed  CAS  Google Scholar 

  • Truex RC (1972) Myocardial cell diameters in primate hearts. Am J Anat 135:269–280

    PubMed  CAS  Google Scholar 

  • Vetterlein F (1989) Hypoxia-induced acute changes in capillary and fiber density and capillary red cell distribution in the rat heart. Circ Res 64:742–752

    PubMed  CAS  Google Scholar 

  • Vodovar N, Desnoyers F (1975) Influence du mode de fixation sur la morphologie ultrastructurale des cellules normales et alterées du myocarde. J Microscopie Biol Cell 24:239–248

    Google Scholar 

  • Waal EJ de, Vreeling-Sindelarova H, Schellens JPM, James J (1986) Starvation-induced microautophagic vacuoles in rat myocardial cells. Cell Biol Int Rep 10(7): 527–533

    PubMed  Google Scholar 

  • Walker SM, Schrodt GR, Currier GT (1975) Evidence for a structural relationship between successive parallel tubules in the SR network and supernumerary striations of Z line material in Purkinje fibers of the chicken, sheep, dog and Rhesus monkey heart. J Morphol 147:459–474

    PubMed  CAS  Google Scholar 

  • Watkins SC, Samuel JL, Marotte F, Bertier-Savalle B, Rappaport L (1987) Microtubules and desmin filaments during onset of heart hypertrophy in rat: Double immunelectron microscope study. Circ Res 60(3): 327–336

    PubMed  CAS  Google Scholar 

  • Wearn JT (1928) The extent of the capillary bed of the heart. J Exp Med 47:273–292

    PubMed  CAS  Google Scholar 

  • Weinstein ES, Benson DW, Fry DE (1986) Subpopulations of human heart mitochondria. J Surg Res 40:495–498

    PubMed  CAS  Google Scholar 

  • Weiss HR, Cornway RS (1985) Morphometric study of the total and perfused arteriolar and capillary network of the rabbit left ventricle. Cardiovasc Res 19(6): 343–345

    PubMed  CAS  Google Scholar 

  • Wheat MW (1965) Ultrastructure autoradiography and lysosome studies in myocardium. J Mount Sinai Hosp 32:107–121

    Google Scholar 

  • Winkle van (1977) The fenestrated collar of mammalian cardiac sarcoplasmic reticulum: a freeze fracture study. Am J Anat 149:277–282

    PubMed  Google Scholar 

  • Wiest G (1990a) Die Längenzunahme der arteriellen Gefäße im Rattenherz während des physiologischen Wachstums. Med Inaug Diss, Universität Heidelberg

    Google Scholar 

  • Wiest G, Gharehbaghi H, Greber D, Mattfeldt T, Mall G (1990 b) Längenzunahme der arteriellen Gefäße im Rattenherzen bei physiologischem Wachstum und bei Hypertrophie. Verh Dtsch Ges Pathol 74:608

    Google Scholar 

  • Wiest G, Gharehbaghi H, Amann K, Simon T, Mattfeldt T, Mall G (1992) Physiological growth of arteries in the rat heart, parallels the growth of capillaries, but not of myocytes. J Mol Cell Cardiol (in press)

    Google Scholar 

  • Winegrad S (1982) Calcium release from cardiac sarcoplasmic reticulum. Ann Rev Physiol 44:451–462

    CAS  Google Scholar 

  • Ziada AMAR, Hudlicka O, Tyler KR, Wright AJA (1984) The effect of long-term vasodilatation on capillary growth and performance in rabbit heart and skeletal muscle. Cardio vasc Res 18:724

    CAS  Google Scholar 

  • Zglinicki T v (1988) Monovalent ions are spatially bound within the sarcomere. Gen Physiol Biophys 7:495–503

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mall, G. (1993). Ultrastruktur des Myokard. In: Pathologische Anatomie des Herzens und seiner Hüllen. Spezielle pathologische Anatomie, vol 22 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-51156-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-51156-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-51157-8

  • Online ISBN: 978-3-642-51156-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics