Skip to main content

Adaptation an Myokardischämie: „hibernating myocardium“

  • Conference paper
März 1995, Hamburg

Part of the book series: Refresher Course Aktuelles Wissen für Anästhesisten ((REFRESHER COUR,volume 21))

  • 27 Accesses

Zusammenfassung

Eine Myokardischämie hinterläßt unterschiedliche Folgezustände. Wenn eine schwere Ischämie länger als 20 min andauert, entwickelt sich ein Myokardinfarkt, und ein irreversibler Verlust der kontraktilen Funktion tritt ein. Wenn die myokardiale Ischämie weniger schwer, aber dennoch lang anhaltend ist, kann das Myokard vital bleiben, seine kontraktile Funktion ist jedoch chronisch reduziert; die kontraktile Funktion normalisiert sich dann nach Reperfusion. Dieser Zustand ist als „hibernating myocardium“ bezeichnet worden [11]. Der Begriff „hibernation“ (Winterschlaf) wird für das Myokard in Analogie etwa zu einem Bären gebraucht, der im Winterschlaf seinen Energiebedarf reduziert und damit auch ohne Nahrungszufuhr den Winter überlebt. Schließlich kann eine Myokardischämie durch Reperfusion beseitigt werden; die vollständige Erholung der kontraktilen Funktion eines reversibel geschädigten Myokards erfolgt aber nicht unmittelbar, sie kann erhebliche Zeit erfordern [8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Camacho SA, Lanzer P, Toy BJ, Gober J, Velenza M, Botvinick EH, Weiner MW (1988) In vivo alterations of high-energy phosphates and intracellular pH during reversible ischemia in pigs: a 31P magnetic resonance spectroscopy study. Am Heart J 116: 701–708

    Article  PubMed  CAS  Google Scholar 

  2. Downing SE, Chen V (1990) Myocardial hibernation in the ischemic neonatal heart. Circ Res 66: 763–772

    PubMed  CAS  Google Scholar 

  3. Fedele FA, Gewirtz H, Capone RJ, Sharaf B, Most AS (1988) Metabolic response to prolonged reduction of myocardial blood flow distal to a severe coronary artery stenosis. Circulation 78: 729–735

    Article  PubMed  CAS  Google Scholar 

  4. Flameng WR, Suy R, Schwarz F et al. (1981) Ultrastructural correlates of left ventricular contraction abnormalitiers in patients with chronic ischemic heart disease: Determinants of reversible segmental asynergy postrevascularization surgery. Am Heart J 102: 846–857

    CAS  Google Scholar 

  5. Gallagher KP, Matsuzaki M, Osakada G, Kemper WS, Ross J Jr (1983) Effect of exercise on the relationship between myocardial blood flow and systolic wall thickening in dogs with acute coronary stenosis. Circ Res 52: 716–729

    PubMed  CAS  Google Scholar 

  6. Guth BD, Martin JF, Heusch G, Ross J Jr (1987) Regional myocardial blood flow, function and metabolism using phosphorus- 31 nuclear magnetic resonance spectroscopy during ischemia and reperfusion. J Am Coll Cardiol 10: 673–681

    Article  PubMed  CAS  Google Scholar 

  7. Guth BD, Schulz R, Heusch G (1993) Time course and mechanisms of contractile dysfunction during acute myocardial ischemia. Circulation 87 [Suppl IV]: IV-35-IV-42

    Google Scholar 

  8. Matsuzaki M, Gallagher KP, Kemper WS, White F, Ross J Jr (1983) Sustained regional dysfunction produced by prolonged coronary stenosis: gradual recovery after reperfusion. Circulation 68: 170–182

    Article  PubMed  CAS  Google Scholar 

  9. Pantely GA, Malone SA, Rhen WS, Anselone CG, Arai A, Bristow J, Bristow JD (1990) Regeneration of myocardial phosphocreatine in pigs despite continued moderate ischemia. Circ Res 67: 1481–1493

    PubMed  CAS  Google Scholar 

  10. Rahimtoola SH (1982) Coronary bypass surgery for chronic angina–1981. Circulation 65: 225–241

    Article  PubMed  CAS  Google Scholar 

  11. Rahimtoola SH (1985) A perspective on the three large multicenter randomized clinical trials of coronary bypass surgery for chronic stable angina. Circulation 72 [Suppl V]: V-123-V-135

    Google Scholar 

  12. Rahimtoola SH (1989) The hibernating myocardium. Am Heart J 117: 211–221

    Article  PubMed  CAS  Google Scholar 

  13. Rahimtoola SH (1991) Clinical overview of management of chronic ischemic heart disease. Circulation 84 [Suppl I]: I-81-I-84

    Google Scholar 

  14. Rose J, Schulz R, Martin C, Heusch G (1993) Post-ejection wall thickening as a marker of successful short term hibernation. Cardiovasc Res 27: 1306–1311

    Article  PubMed  CAS  Google Scholar 

  15. Ross J Jr (1991) Myocardial perfusion-contraction matching. Implications for coronary heart disease and hibernation. Circulation 83: 1076–1083

    PubMed  Google Scholar 

  16. Schulz R, Guth BD, Pieper K, Martin C, Heusch G (1992) Recruitment of an inotropic reserve in moderately ischemic myocardium at the expense of metabolic recovery: a model of short-term hibernation. Circ Res 70: 1282–1295

    PubMed  CAS  Google Scholar 

  17. Schulz R, Miyazaki S, Miller M, Thaulow E, Heusch G, Ross J Jr, Guth BD (1989) Consequences of regional inotropic stimulation of ischemic myocardium on regional myocardial blood flow and function in anesthetized swine. Circ Res 64: 1116–1126

    PubMed  CAS  Google Scholar 

  18. Schulz R, Rose J, Heusch G (1994) Endogenous adenosine is not involved in the development of short-term myocardial hibernation. J Moll Cell Cardiol 26: 234 (Abstract)

    Google Scholar 

  19. Schulz R, Rose J, Martin C, Brodde 0E, Heusch G (1993) Development of short-term myocardial hibernation: its limitation by the severity of ischemia and inotropic stimulation. Circulation 88: 684–695

    CAS  Google Scholar 

  20. Schulz R, Rose J, Martin C, Heusch G (1993) Activation of ATP-dependent potassium channels is not involvedin the development of short-term myocardial hibernation in swine. Circulation 88: I - 632 (Abstract)

    Google Scholar 

  21. Van Overschelde JLJ, Wijns W, Depré C et al. (1993) Mechanisms of chronic regional postischemic dysfunction in humans. New insights from the study of noninfarcted collateral-dependent myocardium. Circulation 87: 1513–1523

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schulz, R., Heusch, G. (1995). Adaptation an Myokardischämie: „hibernating myocardium“. In: März 1995, Hamburg. Refresher Course Aktuelles Wissen für Anästhesisten, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-51143-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-51143-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58851-1

  • Online ISBN: 978-3-642-51143-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics