Skip to main content

Wechselwirkungen zwischen Laserlicht und Materie

  • Chapter
  • 100 Accesses

Part of the book series: Laser in Technik und Forschung ((LASER TECHNIK))

Zusammenfassung

Die Wechselwirkungen zwischen Laserlicht und Materie überspannen ein sehr weites Feld (vgl. z.B. [2.1–2.6]), angefangen von den Prozessen im aktiven Lasermedium und an den Laserspiegeln über die Strahlführung durch verschiedene optische Komponenten bis zur gezielten Wechselwirkung in einer Prozeßkammer. Ein kleiner, für die Laserchemie bedeutsamer Ausschnitt an Wechselwirkungen wird teilweise in diesem Kapitel und teilweise in den einzelnen Sachkapiteln betrachtet. Sowohl die Laser-Material-Wechselwirkung selbst wie auch die Folgeprozesse in der laserbestrahlten Materie hängen stark von den jeweiligen Materialeigenschaften ab. Aus diesem Grund sind die nachfolgenden Abschnitte nach dem anfänglichen Aggregatzustand der laserbestrahlten Materie eingeteilt.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Haken, H., Licht und Materie I, Elemente der Quantenoptik, BI-Wissenschaftsverlag, Mannheim 1979

    Google Scholar 

  2. Haken, H., Licht und Materie II, Laser, BI-Wissenschaftsverlag, Mannheim 1981

    Google Scholar 

  3. Demtröder, W., Laser Spectroscopy - Basic Concepts and Instrumentation, Springer Series in Chemical Physics, Band 5, Springer, Berlin 1981 sowie Laserspektroskopie, Springer, Berlin 1991

    Google Scholar 

  4. von Allmen, M., Laser-Beam Interactions with Materials, Springer Series in Materials Science, Band 2, Springer, Berlin 1987

    Google Scholar 

  5. Letokhov, V.S., Laser-Induced Chemistry–Basic Nonlinear Processes and Applications, Appl.Phys. B46 (1988) 237–251

    Google Scholar 

  6. Craxton, R.S., R.L. McCroy und J.M. Soures, Laserinduzierte Kernfusion, in “Anwendungen des Lasers”, Spektrum der Wissenschaft 1988, S. 134–146

    Google Scholar 

  7. Lange, R., W. Grill und W. Martienssen, Observation of Single Impurity Ions in a Crystal, Europhys.Lett. 6 (1988) 499–503

    Google Scholar 

  8. Abraham, E., C.T. Seaton und S.D. Smith, Der optische Computer, in “Anwendungen des Lasers”, Spektrum der Wissenschaft 1988, S. 168–178

    Google Scholar 

  9. Sonderhefte zur optischen Bistabilität: IEEE J.Quant.Electron. 17 (1981) Heft Nr. 3 und 21 (1985) Heft Nr. 9

    Google Scholar 

  10. Kummrow, A. und H.J. Eichler, Absorption Bistability in Evaporated ZnSex Thin Films, Appl.Phys. B49 (1989) 497–502

    Google Scholar 

  11. Steiger, B., R. Wolf, Th. Beierlein, A. Fischer und D. Schafer, Absorptionsmessungen in der Lasertechnologie, in KDT-Lehrgang “Lasertechnik”, Eigenverlag der Kammer der Technik ( KDT ), Berlin 1987, S. 65–72

    Google Scholar 

  12. Kurz, H., Fundamentals of Picosecond and Femtosecond Laser Solid Interactions, Mat.Res.Soc.Symp.Proc. 75 (1987) 27–38

    Google Scholar 

  13. Reiße, G., Laserinduzierte Elementarprozesse in Festkörperoberflächen, im KDT-Lehrgang “Lasertechnik”, Eigenverlag der Kammer der Technik ( KDT ), Berlin 1988, S. 5–18

    Google Scholar 

  14. Herziger, G. und R. Wester, Materialbearbeitung mit Lasern, Physik in unserer Zeit 22 (1991) 204–212

    Google Scholar 

  15. Mazumder, J., Overview of melt dynamics in laser processing, Opt.Engin. 30 (1991) 1208–1219

    Google Scholar 

  16. Ursu, I., I.N. Mihailescu, A.M. Prokhorov, V. N. Tokarev und V.I. Konov, High-intensity laser irradiation of metallic surfaces covered by periodic structures J.Appl.Phys. 61 (1987) 2445–2457

    Google Scholar 

  17. Ursu, I., I.N. Mihailescu, C.-D. Campan, A.M. Prokhorov, V.I. Konov und V.N. Tokarev, Laser power absorbed outside the beam spot on a rippled metallic surface as determined by a matrix calorimetric method, J.Appl.Phys. 64 (1988) 6823–6826

    Google Scholar 

  18. Reif, J., High power laser interaction with the surface of wide bandgap materials, Opt. Engin. 28 (1989) 1122–1132

    Google Scholar 

  19. Guenther, A.H. und J.K. McIver, Understanding supports progress in damage-resistant coatings, Laser Focus World, Juni 1990, S. 103–113

    Google Scholar 

  20. Boyle, W.S., Optische Nachrichtensysteme, in “Anwendungen des Lasers”, Spektrum der Wissenschaft 1988, S. 158–167

    Google Scholar 

  21. Gumbel, J., Infrarot-Lichtleitfasern, Physik in unserer Zeit, 21 (1990) 172–174

    Google Scholar 

  22. Mizoguchi, H., M. Ando, T. Mizuno, T. Takagi und N. Nakajima, Design and Fabrication of Light Driven Micropump, in “Micro Electro Mechanical Systems ‘82”, Herausgeber W. Benecke und H.C. Petzold, IEEE Proceedings 1992, S. 31–36

    Google Scholar 

  23. Tam, A.C., W.P. Leung, W. Zapka und W. Ziemlich, Laser-cleaning techniques for removal of surface particulates, J.Appl.Phys. 71 (1992) 3515–3523

    Google Scholar 

  24. Ashkin, A. und J.M. Dziedzic, Observation of Resonances in the Radiation Pressure on Dielectric Spheres, Phys.Rev.Lett. 38 (1977) 1351–1354

    Google Scholar 

  25. Ashkin, A., Applications of Laser Radiation Pressure, Science 210, No. 4474 (1980) 1081–1088

    Google Scholar 

  26. Misawa, H., M. Koshioka, K. Sasaki, N. Kitamura und H. Masuhara, Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water, J.Appl.Phys. 70 (1991) 3829–3836

    Google Scholar 

  27. Prentiss, M., G. Timp, N. Bigelow, R.E. Behringer und J.E. Cunningham, Using light as a stencil, Appl.Phys.Lett. 60 (1992) 1027–1029

    Google Scholar 

  28. Greulich, K.O., Moving Particles by Light: No longer Science Fiction, Proc.RMS 27 (1992) 3–8

    Google Scholar 

  29. Weber, G. und K.O. Greulich, Manipulations of cells, organelles, and genomes by laser microbeam and optical trap, Int.Rev.Cytol. 133 (1992) 1–41 (Übersicht mit 175 Zitaten)

    Google Scholar 

  30. Misawa, H., K. Sasaki, M. Koshioka, N. Kitamura und H. Masuhara, Multibeam laser manipulation and fixation of microparticles, Appl.Phys.Lett. 60 (1992) 310–312

    Google Scholar 

  31. Sasaki, K., M. Koshioka, H. Misawa, N. Kitamura und H. Masuhara, Optical trapping of a metal particle and a water droplet by a scanning laser beam, Appl.Phys.Lett. 60 (1992) 807–809

    Google Scholar 

  32. Ashkin, A. und J.M. Dziedzic, Optical Trapping and Manipulation of Single Living Cells Using Infra-Red Laser Beams, Ber.Bunsenges.Phys.Chem. 93 (1989) 254–260

    Google Scholar 

  33. Hansch, T.W., A.L. Schawlow und G.W. Series, Das Spektrum des atomaren Wasserstoffs, in “Anwendungen des Lasers”, Spektrum der Wissenschaft 1988, S. 22–36

    Google Scholar 

  34. Rempe, G., R.J. Thompson und H.J. Kimble, Vakuum-Rabi-Aufspaltung einzelner Atome–ein neues “Molekül” stellt sich vor, Phys.Bl. 48 (1992) 923–925

    Google Scholar 

  35. Wagner, C., R.J. Brecha, A. Schenzle und H. Walther, Phasendiffusion und Meßprozeß im Ein-Atom-Maser, Phys.Bl. 48 (1992) 465–468

    Google Scholar 

  36. Letokhov, V.S., Laser Selective Detection of Single Atoms, in “Chemical and Biochemical Applications of Lasers”, Herausgeber C.B. Moore, Band V, Academic Press, New York 1980, S. 1–38

    Google Scholar 

  37. Martin, P.J., P.L. Gould, B.G. Oldaker, A.H. Miklich und D.E. Pritchard, Diffraction of atoms moving through a standing light wave, Phys.Rev. A36 (1987) 2495–2498

    Google Scholar 

  38. Ertmer, W., J. Nellessen, J.H. Müller, K. Sengstock und J. Werner, Lasermanipulation freier Atome, Laser und Optoelektronik 23 /5 (1991) 62–69

    Google Scholar 

  39. Balykin, V.O., V.S. Letokhov und A.I. Sidorov, Intense Stationary Flow of Cold Atoms Formed by Laser Deceleration of Atomic Beam, Opt.Commun. 49 (1984) 248–252

    Google Scholar 

  40. Chu, S., J.E. Bjorkholm, A. Ashkin und A. Cable, Experimental Observation of Optically Trapped Atoms, Phys.Rev.Lett. 57 (1986) 314–317

    Google Scholar 

  41. Phillips, W.D. und H.J. Metcalf, Kühlen und Einfangen von Atomen, in “Anwendungen des Lasers”, Spektrum der Wissenschaft 1988, S. 50–57

    Google Scholar 

  42. Cohen-Tannoudji, C.N. und W.D. Phillips, New Mechanisms for Laser Cooling, Physics Today, Oktober 1990, S. 33–40

    Google Scholar 

  43. Wallis, H. und W. Ertmer, Fortschritte in der Laserkühlung von Atomen, Phys.Bl. 48 (1992) 447–451

    Google Scholar 

  44. Diedrich, F., E. Peik, J.M. Chen, W. Quint und H. Walther, Observation of a Phase Transition of Stored Laser-Cooled Ions, Phys.Rev.Lett. 59 (1987) 2931–2934

    Google Scholar 

  45. Diedrich, F., E. Peik, J.M. Chen, W. Quint und H. Walther, Ionenkristalle und Phasenübergänge in einer Ionenfalle, Phys.Bl. 44 (1988) 12–15

    Google Scholar 

  46. Levi, B.G., Clouds of Trapped Couled Ions Condense into Crystals, Physics Today, September 1988, S. 17–20

    Google Scholar 

  47. Levy, D.H., Laser Spectroscopy of Cold Gas-Phase Molecules, Ann.Rev.Phys.Chem. 31 (1980) 197–225

    Google Scholar 

  48. Nibler, J.W. und J.J. Yang, Nonlinear Raman Spectroscopy of Gases, Ann.Rev.Phys.Chem. 38 (1987) 349–381

    Google Scholar 

  49. Ito, M., T. Ebata und N. Mikami, Laser Spectroscopy of Large Polyatomic Molecules in Supersonic Jets, Ann.Rev.Phys.Chem. 39 (1988) 123–147

    Google Scholar 

  50. Bitto, H. und J.R. Huber, Molecular Quantum Beat Spectroscopy, Opt.Commun. 80 (1990) 184

    Google Scholar 

  51. Bitto, H. und J.R. Huber, Molecular Quantum Beats. High-Resolution Spectroscopy in the Time Domain, Acc.Chem.Res. 25 (1992) 65–71

    Google Scholar 

  52. Bergmann, K., S. Schiemann und A. Kuhn, Zustandsbesetzung nach Maß, Phys.Bl. 48 (1992) 907–912

    Google Scholar 

  53. Felker, P.M., Rotational Coherence Spectroscopy: Studies of the Geometries of Large Gas-Phase Species by Picosecond Time-Domain Methods (Feature Article), J.Phys.Chem. 96 (1992) 7844–7857

    Google Scholar 

  54. Neusser, H.J. und E.W. Schlag, Hochauflösungsspektroskopie unter der Dopplerbreite, Angew.Chem. 104 (1992) 269–280

    Google Scholar 

  55. Herzberg, G., Molecular Spectra and Molecular Structure 1. Diatomic Molecules, Prentice Hall, New York 1939

    Google Scholar 

  56. Herzberg, G., II. Infrared and Raman Spectra of Polyatomic Molecules, Van Nostrand Reinhold, New York 1945

    Google Scholar 

  57. Herzberg, G., III. Electronic Spectra of Polyatomic Molecules, Van Nostrand Reinhold, New York 1966

    Google Scholar 

  58. Friedrich, D.M. und W.M. McClain, Two-Photon Molecular Electronic Spectroscopy, Ann.Rev.Phys.Chem. 31 (1980) 559–577

    Google Scholar 

  59. Isenor, N.R. und M.C. Richardson, Dissociation and Breakdown of Molecular Gases by Pulsed CO2 Laser Radiation, Appl.Phys.Lett. 18 (1971) 224–226 sowie Opt.Commun. 3 (1971) 360

    Google Scholar 

  60. Isenor, N.R., V. Merchant, R.S. Hallsworth und M.C. Richardson, CO2 Laser-Induced Dissociation of SiF4 Molecules into Electronically Excited Fragment, Can.J.Phys. 51 (1973) 1281–1287

    Google Scholar 

  61. Ambartzumian, R.V., Yu.A. Gorokhov, V.S. Letokhov und G.N. Makarov, Zh.ETF Pis.Red. 21 (1975) 375 bzw. JETP Lett. 21 (1975) 171

    Google Scholar 

  62. Lyman, J.L., R.J. Jensen, J.P. Rink, C.P. Robinson und S.D. Rockwood, Isotopic enrichment of SF6 in S34 by multiple absorption of CO2 laser radiation, Appl.Phys.Lett. 27 (1975) 87–89

    Google Scholar 

  63. Bachmann, H.R., H. Nöth, R. Rink und K.L. Kompa, Infrared Laser Specific Reactions of Boranes. Conversion of Diborane to Icosaborane(16), B20H16, Chem.Phys.Lett. 29 (1974) 627–629

    Google Scholar 

  64. Bachmann, H.R., H. Nöth, R. Rink und K.L. Kompa, Infrared Laser Specific Reactions of Boranes. CO2 Laser Control of the Exchange Reactions B(CH3)nBrm + HBr -> B(CH3)n-1,Brm+1 + CH4, Chem.Phys.Lett. 33 (1975) 261–264

    Google Scholar 

  65. Fuß, W. und K.L. Kompa, The Importance of Spectroscopy for Infrared Multiphoton Excitation, Prog.Quant.Electr. 7 (1981) 117–151

    Google Scholar 

  66. Lupo, D.W. und M. Quack, IR-Laser Photochemistry, Chem.Rev. 87 (1987) 181–216

    Google Scholar 

  67. Kuritsyn, Yu.A., G.N. Makarov, V.R. Mironenko und I. Pak, Collisionless Excitation of NH3 Molecules via One-and Two-Photon Transitions by Multimode Radiation of TEA CO2-Laser, Appl.Phys. B53 (1991) 58–64

    Google Scholar 

  68. Fuß, W. und J. Hartmann, IR absorption of SF6 excited up to the dissociation threshold, J.Chem.Phys. 70 (1979) 5468–5476

    Google Scholar 

  69. Alimpiev, S.S., W. Fuß, K.L. Kompa, C. Schwab und Wan Chong-Yi, Multiphoton Absorption of Broad-Band CO2 Laser Radiation by SF6, Appl.Phys. B35 (1984) 1–5

    Google Scholar 

  70. Abel, B., H. Hippler und J. Troe, Infrared multiphoton excitation dynamics of CF3I. I. Populations and dissociation rates of highly excited rovibrational states, J.Chem.Phys. 96 (1992) 8863–8871 sowie II. Collisional effects on vibrational and rotational state distributions, ibid. 8872–8876

    Google Scholar 

  71. Quack, M., R. Schwarz und G. Seyfang, Time-resolved infrared-spectroscopic observation of relaxation and reaction processes during and after infrared-multiphoton excitation of 12CF3I and 13CF3I with shaped nanosecond pulses, J.Chem.Phys. 96 (1992) 8727–8740

    Google Scholar 

  72. Tambay, R. und R.K. Thareja, Laser-induced breakdown studies of laboratory air at 0.266, 0.355, 0.532 and 1.06 μm, J.Appl.Phys. 70 (1991) 2890–2892

    Google Scholar 

  73. Flynn, G.W., Energy Flow in Polyatomic Molecules, in “Chemical and Biochemical Applications of Lasers”, Herausgeber C.B. Moore, Band I, Academic Press, New York 1974, S. 163–201

    Google Scholar 

  74. Franko, M. und C.D. Tran, Thermal lens technique for sensitive kinetic determinations of fast chemical reactions. Part I. Theory, Rev.Sci.Instrum.62 (1991) 2430–2437 und Part II. Experiment, ibid. S. 2438–2442 sowie Thermal Lens Effect in Electrolyte and Surfactant Media, J.Phys.Chem. 95 (1991) 6688–6696

    Google Scholar 

  75. Harith, M.A., V. Palleschi, A. Salvetti, D.P. Singh, M. Vaselli, G.V. Dreiden, Yu.I. Ostrovski und I.V. Semenova, Dynamics of laser-driven shock waves in water, J.Appl.Phys. 66 (1989) 5194–5197

    Google Scholar 

  76. Zimmermann, E.C. und J. Ross, Light induced bistability in S2O6F2 <=> 2SO3F: Theory and experiment, J.Chem.Phys. 80 (1984) 720–729

    Google Scholar 

  77. Zimmermann, E.C., M. Schell und J. Ross, Stabilization of instable states ans oscillatory phenomena in an illuminated thermochemical system: Theory and experiment, J.Chem.Phys. 81 (1984) 1327–1336

    Google Scholar 

  78. Andrews, L., Spectroscopy of Molecular Ions in Noble Gas Matrices, Ann.Rev.Phys.Chem. 30 (1979) 79–101

    Google Scholar 

  79. Brenton, A.G., R.P. Morgan und J.H. Beynon, Unimolecular Ion Decomposition, Ann.Rev.Phys.Chem. 30 (1979) 51–78

    Google Scholar 

  80. Moseley, J. und J. Dump, Fast Ion Beam Photofragment Spectroscopy, Ann.Rev.Phys.Chem. 32 (1981) 53–76

    Google Scholar 

  81. Saykally, R.J. und R.C. Woods, High Resolution Spectroscopy of Molecular Ions, Ann.Rev.Phys.Chem. 32 (1981) 403–431

    Google Scholar 

  82. Miller, T.A., Light and Radical Ions, Ann.Rev.Phys.Chem. 33 (1982) 257–282

    Google Scholar 

  83. Friedrich, J. und D. Haarer, Photochemisches Lochbrennen und optische Relaxationsspektroskopie in Polymeren und Gläsern, Angew.Chem. 96 (1984) 96–123

    Google Scholar 

  84. Campion, A., Raman Spectroscopy of Molecules Adsorbed on Solid Surfaces, Ann.Rev.Phys.Chem. 36 (1985) 549–572

    Google Scholar 

  85. Rondelez, F., D. Ausserre und H. Hervet, Experimental Studies of Polymer Concentration Profiles at Solid-Liquid and Liquid-Gas Interfaces by Optical and X-Ray Evanescent Wave Techniques, Ann.Rev.Phys.Chem. 38 (1987) 317–347

    Google Scholar 

  86. Haarer, D. and R. Silbey, Hole-Burning Spectroscopy of Glasses, Physics Today, Mai 1990, S. 58–65

    Google Scholar 

  87. Personov, R.I., Luminescence line narrowing and persistent hole burning in organic materials: principles and new results, J.Photochem.Photobiol. A: Chem. 62 (1992) 321–332

    Google Scholar 

  88. Asher, S.A., UV Resonance Raman Studies of Molecular Structure and Dynamics in Physical and Biophysical Chemistry, Ann.Rev.Phys.Chem. 39 (1988) 537–588

    Google Scholar 

  89. Flynn, G.W., Energy Flow in Polyatomic Molecules, in “Chemical and Biochemical Applications of Lasers”, Herausgeber C.B. Moore, Band I, Academic Press, New York 1974, S. 163–201

    Google Scholar 

  90. Shoemaker, R.L., Coherent Transient Effects in Optical Spectroscopy, Ann.Rev.Phys.Chem. 30 (1979) 239–270

    MathSciNet  Google Scholar 

  91. Fayer, M.D., Dynamics of Molecules in Condensed Phases: Picosecond Holographic Grating Experiments, Ann.Rev.Phys.Chem. 33 (1982) 63–87

    Google Scholar 

  92. Hirota, E. and K. Kawaguchi, High Resolution Infrared Studies of Molecular Dynamics, Ann.Rev.Phys.Chem. 36 (1985) 53–76

    Google Scholar 

  93. Fleming, G.R., Subpicosecond Spectroscopy, Ann.Rev.Phys.Chem. 37 (1986) 81–104

    Google Scholar 

  94. Dovichi, N.J., Laser-based microchemical analysis (Review Article), Rev.Sci.Instrum. 61 (1990) 3653–3667

    Google Scholar 

  95. Masuhara, H., N. Kitamura, H. Misawa, K. Sasaki and M. Kochioka, Laser spectroscopy and photochemistry in micrometre small volumes, J.Photochem.Photobiol. A:Chem. 65 (1992) 235–247

    Google Scholar 

  96. Masuhara, H., Space-and time-resolved laser spectroscopy and photochemistry of organic solids, J.Photochem.Photobiol. A:Chem. 62 (1992) 397–413

    Google Scholar 

  97. Petry, H., Schichtdicken mit dem Laser prüfen, Laser-Praxis, Juni 1990, S. LS 60–63

    Google Scholar 

  98. Anderson, J.G., Free Radicals in the Earth’s Atmosphere: Their Measurement and Interpretation, Ann.Rev.Phys.Chem. 38 (1987) 489–520

    Google Scholar 

  99. Sonderheft von Appl.Phys. B: LIDAR Monitoring of the Atmosphere Recent Developments, Band B55, Heft 1, Juli 1992

    Google Scholar 

  100. Rothberg, L., Pulsed Laser Optoacoustic Spectroscopy in the Study of Surface Adsorbate Structure and Dynamics (Feature Article), J.Phys.Chem. 91 (1987) 3467–3474

    Google Scholar 

  101. Neubrand, A. and P. Hess, Laser generation and detection of surface acoustic waves: Elastic properties of surface layers, J.Appl.Phys. 71 (1992) 227–238

    Google Scholar 

  102. Durst, F., M. Stieglmeier und M. Ziema, Strbmungs-und Teilchenmessung mittels Doppler-Anemometrie, Physik in unserer Zeit 24 (1993) 15–23

    Google Scholar 

  103. Altkorn, R. und R.N. Zare, Effects of Saturation on Laser-Induced Fluorescence Measurements of Population and Polarization, Ann.Rev.Phys.Chem. 35 (1984) 265–289

    Google Scholar 

  104. Lin, M.C. und G. Ertl, Laser Probing of Molecules Desorbing and Scattering from Solid Surfaces, Ann.Rev.Phys.Chem. 37 (1986) 587–615

    Google Scholar 

  105. Hsu, D.S.Y., Laser probing of nascent gaseous product species formed in chemical reactions on surfaces, Opt.Engin. 29 (1990) 1494–1503

    Google Scholar 

  106. Schmidtke, G., R. Grisar und M. Tacke, Gasmessungen mit Infrarot-Diodenlasem, Opto Elektronik Magazin 5 (1989) 433–436

    Google Scholar 

  107. Steinfeld, J.I., Optical Analogs of Magnetic Resonance Spectroscopy, in “Chemical and Biochemical Applications of Lasers”, Band I, Herausgeber C.B. Moore, Academic, New York 1974, S. 103–138

    Google Scholar 

  108. Flynn, G.W. und N. Sutin, Kinetic Studies of Very Rapid Chemical Reactions in Solution, in “Chemical and Biochemical Applications of Lasers”, Band I, Herausgeber C.B. Moore, Academic, New York 1974, S. 309–338

    Google Scholar 

  109. Laubereau, A. und W. Kaiser, Picosecond Investigations of Dynamic Processes in Polyatomic Molecules in Liquids, in “Chemical and Biochemical Applications of Lasers”, Band II, Herausgeber C.B. Moore, Academic, New York 1977, S. 87–143

    Google Scholar 

  110. Druet, S. und J.-P. Taran, Coherent Anti-Stokes Raman Spectroscopy, in “Chemical and Biochemical Applications of Lasers”, Band IV, Academic, New York 1979, S. 187–252

    Google Scholar 

  111. Hirota, E., Structural Studies of Transient Molecules by Laser Spectroscopy, in “Chemical and Biochemical Applications of Lasers”, Band V, Academic, New York 1980, S. 39–93

    Google Scholar 

  112. Evenson, K.M., R.J. Saykally, D.A. Jennings, R.F. Curl, Jr. und J.M. Brown, Far Infrared Laser Magnetic Resonance, in “Chemical and Biochemical Applications of Lasers”, Band V, Academic, New York 1980, S. 95–138

    Google Scholar 

  113. Reisler, H., M. Mangir und C. Wittig, Laser Kinetic Spectroscopy of Elementary Processes, in “Chemical and Biochemical Applications of Lasers”, Band V, Academic, New York 1974, S. 139–174

    Google Scholar 

  114. Elsaesser, T. und W. Kaiser, Vibrational and Vibronic Relaxation of Large Polyatomic Molecules in Liquids, Annu.Rev.Phys.Chem. 42 (1991) 83–107

    Google Scholar 

  115. Heilweil, E.J., M.P. Casassa, R.R. Cavanagh und J.C. Stephenson, Picosecond Vibrational Energy Transfer Studies of Surface Adsorbates, Annu.Rev.Phys.Chem. 40 (1989) 143–171

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stafast, H. (1993). Wechselwirkungen zwischen Laserlicht und Materie. In: Angewandte Laserchemie. Laser in Technik und Forschung. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-51140-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-51140-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-51141-7

  • Online ISBN: 978-3-642-51140-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics