Skip to main content

Part of the book series: Mikroelektronik ((MIKROELEKTRONIK))

  • 56 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. J.H. Wolfe, Jupiter, pp. 119, J.A. van Allen, Interplanetary Particles and Fields, pp. 161, Scientific American (Sept. 1975).

    Google Scholar 

  2. G.W. Singley und J.I. Vette, The AE-4 Model of the Outer Radiation Zone Environment, NSSDC 72–06, NASA Goddard SFC (August 1972).

    Google Scholar 

  3. M.J. Teage und J.I. Vette, A Model of the Trapped Electron Population for Solar Minimum, NSSDC 74–03, NASA Goddard SFC (April 1974).

    Google Scholar 

  4. M.J. Teage, K.W. Chan und J.I. Vette, A Model Environment of Trapped Electrons for Solar Maximum, NSSDC/WDC-A- RandS 76–04, NASA Goddard SFC (May 1976).

    Google Scholar 

  5. D.M. Sawyer und 1.I. Vette, AP-8 Trapped Proton Environment for Solar Maximum and Solar Minimum, NSSDC/WDC-A-RandS 76–06 (Dez. 1976 ).

    Google Scholar 

  6. J.H. Adams Jr., R. Silberberg und C.H. Tsao, Cosmic Ray Effects on Microelectronics, Part I: The Near-Earth Particle Environment, NRL-Memorandum Report 4506 (1981).

    Google Scholar 

  7. D. Bräunig, Elektronik unter Beschuß: Wie hochenergetische Strahlung Halbleiter-Bauelementen zusetzt, Berichte aus dem HMI, 1, 3 (1988).

    Google Scholar 

  8. R.D. Evans, The Atomic Nucleus, Mc Graw-Hill, New York (1965).

    Google Scholar 

  9. C.M. Davisson und R.D. Evans, Gamma-Ray Absorption Coefficients, Rev. Mod. Phys. 24 (1952) 79.

    Article  Google Scholar 

  10. R.G. Jaeger und W. Hübner (Hrsg.), Dosimetrie und Strahlenschutz, Stuttgart: Thieme 1974.

    Google Scholar 

  11. M.J. Berger und J.M. Seltzer, Additional Stopping Power, NASA SP-3036 (1966).

    Google Scholar 

  12. A. Cole, Absorption of 20 eV to 50 000 eV Electron Beams in Air and Plastic, Rad. Res. 38 (1969) 7.

    Google Scholar 

  13. E.J. Kobetich und R. Katz, Energy Disposition by Electron Beams and S Rays, Phys. Rev. 170 (1968) 391.

    Google Scholar 

  14. J.F. Ziegler, Handbook of Stopping Cross Sections for Energetic Ions in All Elements, Pergamon Press, New York (1980).

    Google Scholar 

  15. H. Bethe und J. Ashkin, Experimental Nuclear Phys, Bd. 1, ed. E. Segré, Wiley, New York (1953).

    Google Scholar 

  16. H. Bichsel, Radiation Dosimetry, Bd. 1, ed. F.H. Attig, W.C. Roesch, Academic Press, New York (1968).

    Google Scholar 

  17. D. Bräunig, W. Fahrner, W. Gaebler und F. Wulf, Workshop: “Strahleneffekte an elektronischen Bauteilen”, HMI Berlin (Mai 1980 ).

    Google Scholar 

  18. G.D. Watkins, Radiation Damage in Semiconductors, Academic Press, New York (1965).

    Google Scholar 

  19. G.D. Watkins, Radiation Effects in Semiconducting Components, Toulouse, März 1967, J. Phys. Soc. Japan 18, Suppl. II, 22 (1963).

    Google Scholar 

  20. L. Miller, D.V. Lang und L.C. Kimerling, Capacitance Transient Spectro- scopy, Rev. Mater. Sci., 377 (1977).

    Google Scholar 

  21. G.D. Watkins und J.R. Troxell, Negative Properties for Point Defects in Silicon, Phys. Rev. Lett. 44 (1980) 593.

    Article  Google Scholar 

  22. J.R. Srour, Short Term Annealing in Electron-Irradiated p-Type Silicon, IEEE-Trans. Nucl. Sci. 17 (Dec 1970) 118.

    Article  Google Scholar 

  23. Comment on “ Short Term Annealing of 30 MeV Electron Damage in High Purity n-Type Silicon, IEEE-Trans. Nucl. Sci. 19 (Feb. 1972) 897.

    Google Scholar 

  24. B.L. Gregory und H.H. Sander, Transient Annealing of Defects in Irradia- ted Silicon Devices, Proc. IEEE 58 (1970) 1328.

    Google Scholar 

  25. G.D. Watkins, Radiation Damage in Semiconductors, Academic Press, New York (1964).

    Google Scholar 

  26. O.L. Curtis Jr., J.R. Srour und R.B. Rand, Recombination Studies on Gam- ma-Irradiated n-Type Silicon, J. Appl. Phys. 43 (1972) 4638.

    Article  Google Scholar 

  27. O.L. Curtis, Explanation for the Discrepancy in Recombination Level Positions in Irradiated n-Type Ge/Reported by Various Observers, J. Appl. Phys. 30 (1965) 2094.

    Article  Google Scholar 

  28. G.C. Messenger, A Two Level Model for Lifetime Reduction Processes in Neutron-Irradiated Silicon and Germanium, IEEE Trans. Nucl. Sci. NS-14 (1967) 88.

    Article  Google Scholar 

  29. V.A.J. van Lint, T.M. Flanagan, R.E. Leadon, J.A. Naber und V.C. Rodgers, Mechanisms of Radiation Effects in Electronic Materials, Vol. 1, John Wiley, New York, 1980.

    Google Scholar 

  30. B.R. Gossick, Disordered Regions in Semiconductors Bombarded by Fast Neutrons, J. Appl. Phys. 30 (1959) 1214.

    Article  Google Scholar 

  31. J.R. Srour und O.L. Curtis Jr., Short Term Annealing in Silicon Devices Following Pulsed 14 MeV Neutron Irradiation, IEEE Trans. Nucl. Sci. 19 (Dec. 1972) 362.

    Article  Google Scholar 

  32. J.R. Srour, Stable Damage Comparisons for Neutron Irradiated Silicon, IEEE Trans. Nucl. Sci. 20 (Dec. 1973) 190.

    Article  Google Scholar 

  33. J.J. Loferski und P. Rappaport, Radiation Damage in Ge and Si Detected by Carrier Lifetime Changes: Damage Thresholds, Phys. Rev. 111 (1958) 432.

    Article  Google Scholar 

  34. H.J. Stein und F.L. Vook, Radiation Defects in Semiconductors, ed. F.L. Vook, Plenum Press, New York, 115 (1968).

    Google Scholar 

  35. B.L. Gregory, Minority Carrier Recombination in Neutron Irradiated Silicon, IEEE Trans. Nucl. Sci 16 (Dec. 1969) 53.

    Article  Google Scholar 

  36. V.A.J. van Lint, G. Gigas und J. Barengoltz, Correlation of Displacement Effects Produced by Electrons, Protons and Neutrons in Silicon, IEEE Trans. Nucl. Sci. 22 (1975) 2663.

    Article  Google Scholar 

  37. W. Shockley, Electrons and Holes in Semiconductors, D. Van Nostrand, Princeton, N.J. (1950).

    Google Scholar 

  38. V.S. Vavilov, Effects of Radiation on Semiconductors, Consultant Bureau, New York (1965).

    Google Scholar 

  39. J.L. Wirth und S.C. Rogers, The Transient Response of Transistors and Diodes to Ionizing Radiation, IEEE Trans. Nucl. Sci. 11 (Nov. 1964) 24.

    Article  Google Scholar 

  40. T.R. Oldham und J.M. McGarrity, Ionization of Si02 by Heavy Charged Particles, IEEE Trans. Nucl. Sci. 28 (Dec. 1981) 3975.

    Article  Google Scholar 

  41. R. Freeman und A. Holmes-Siedle, A Simple Model for Predicting Radiation Effects in MOS Devices, IEEE Trans. Nucl. Sci. 25 (1978) 1216.

    Article  Google Scholar 

  42. R. J. Powell und G.F. Derbenwick, Vacuum Ultraviolet Radiation Effects in Si02, IEEE-NS-18 (6) (Dec. 1971) 99–105.

    Google Scholar 

  43. M. Knoll, D. Bräunig und W.R. Fahrner, Generation of Oxide Charge and Interface States by Ionizing Radiation and by Tunnel Injection Experiments, IEEE Trans. Nucl. Sci., NS-29 (6) (Dec. 1982) 1471–1478.

    Google Scholar 

  44. J.R. Srour und K.Y. Chin, MOS Hardening Approaches for Low Temperature Applications, IEEE Trans. Nucl. Sci. 24 (1977) 2140.

    Article  Google Scholar 

  45. M. Knoll, Dissertation, Generation von Oxidladungen und Phasengrenzzuständen im MOS-System durch Tunnelinjektion und ionisierende Bestrahlung,TU Berlin, FB 19 (1983).

    Google Scholar 

  46. P.S. Winokur, J.M. McGarrity und H.E. Boesch Jr., Dependance of Interface-State Buildup on Hole Generation and Transport, IEEE Trans. Nucl. Sci. NS-23 (1976) 1580.

    Article  Google Scholar 

  47. F.B. McLean, H.E. Boesch Jr. und J.M. McGarrity, Proc. Intl. Conf.: Physics of Si02 and its Interfaces, Pergamon Press, New York 19 (1978).

    Google Scholar 

  48. C.T. Sah, Origin of Interface States and Oxide Charge Generated by Ionizing Radiations, IEEE Trans. Nucl. Sci. NS-23(6) (1976) 1563.

    Article  Google Scholar 

  49. A.G. Revesz, Chemical and Structural Aspects of the Irradiation Behaviour of SiO2 Films on Silicon, IEEE Trans. Nucl. Sci. NS-24, (1977) 2102.

    Article  Google Scholar 

  50. P.M. Lanahan und P.V. Dressendorfer, An Electron Spin Resonance Study of Radiation-Induced Electrically Active Paramagnetic Centers at the SiO2/Si Interface, J. Appl. Phys. 54 (1983) 1457.

    Article  Google Scholar 

  51. K.O. Jeppson und C.M. Svensson, Negative Bias Stress of MOS Devices at High Electric Fields and Degradation of NMOS Devices, J. Appl. Phys. 48, 5 (1977) 2004.

    Google Scholar 

  52. D.L. Griscom, Diffusion of Radiolytic Molecular Hydrogen as a Mechanism for the Portirradiation Build Up of Interface States in SiO2- on Si Structures, J. Appl. Phys. 58, 7 (1985) 2524.

    Article  Google Scholar 

  53. A.S. Grove, Physics and Technology of Semiconductor Devices, John Wiley and Sons, New York (1967).

    Google Scholar 

  54. R. Bäuerlein, Strahlenschäden in Halbleitern und Halbleiter-Bauelementen, in Festkörperprobleme VIII, ed. O. Madelung, Vieweg, Pergamon Press (1968).

    Google Scholar 

  55. R.R. Brown, Proton and Electron Permanent Damage in Silicon Semiconductor Devices, Boeing Report, D2–90570 (1964).

    Google Scholar 

  56. A.G. Stanley, K.E. Martin und S. Douglas, Radiation Design Criteria Handbook, Technical Memorandum 33–763, Jet Propulsion Laboratory, Pasadena, California (Aug. 1976).

    Google Scholar 

  57. S.C. Sun und J.D. Plummer, Electron Mobility in Inversion and Accumulation Layers on Thermally Oxidized Silicon Surfaces, IEEE Trans. ED-27 (1980) 1497.

    Google Scholar 

  58. K.F. Galloway, M. Gaitan und T.J. Russel, A Simple Model for Seperating Interface and Oxide Charge Effects in MOS Device Characteristics, IEEE Trans. Nucl. Sci. NS-31 (Dec. 1984) 1497.

    Google Scholar 

  59. D. Bräunig, Strahlenschäden in Halbleiterbauelementen, VDI Bildungswerk “Beschleunigertechnik”, Berlin (1982).

    Google Scholar 

  60. P.S. Winokur, J.R. Schwank, P.J. Mc Worther, P.V. Dressendorfer und D.C. Turpin, Correlating The Radiation Response of MOS Capacitors and Transistors, IEEE Trans. Nucl. Sci. 31 (1984) 1453.

    Article  Google Scholar 

  61. C.L. Wilson und J.L. Blue, Two-Dimensional Modeling of N-Channel MOSFETs Including Radiation-Induced Interface and Oxide Charge, IEEE Trans. Nucl. Sci. NS-31 (1984) 1448.

    Article  Google Scholar 

  62. J.R. Schwank, P.S. Winokur, P.J. Mc Worther, F.W. Sexton, P.V. Dressendorfer und D.C. Turpin, Physical Mechanisms Contributing to Device “Rebound”, IEEE Trans. Nucl. Sci. NS-31 (1984) 1434.

    Article  Google Scholar 

  63. D. M. Long, Hardness of MOS and Bipolar Integrated Circuits, IEEE-NS-27 (6) (Dec. 1981) 1674–1679.

    Google Scholar 

  64. G.C. Messenger and M.S. Ash, The Effects of Radiation of Electronic Systems, Van Nostrand Reinhold Company, New York (1986).

    Google Scholar 

  65. M. Schlenther, D. Bräunig, M. Gärtner and F. Gliem, “In Situ” Radiation Tolerance Tests of MOS RAMS“, IEEE Trans. Nucl. Sci. NS-25 (6) (Dec. 1978) 1209.

    Google Scholar 

  66. E.L. Petersen, Tutorial Short Course, Basic Concepts on Single Event Upsets, IEEE Nucl. and Space Radiation Effects Conference, (July 1983), Gatlinburg/Tennessee.

    Google Scholar 

  67. J.H. Adams Jr., The Natural Radiation Environment Inside Spacecraft, IEEE Trans. Nucl. Sci. 29 (1982) 2095.

    Article  Google Scholar 

  68. The Variability of Single Event Upsets Rates in the Natural Environment, IEEE Trans. Nucl. Sci. 30 (1983) 4475.

    Google Scholar 

  69. E.L. Petersen, P. Shapiro, J.H. Adams and E.A. Burke, Calculation of Cosmic-Ray Induced Soft Upsets and Scaling in VLSI Devices, IEEE Trans. Nucl. Sci. 29 (1982) 2055.

    Article  Google Scholar 

  70. J.C. Pickel, Tutorial Short Course, Single Event Upset Mechanisms and Predictions, IEEE Nucl. and Space Radiation Effects Conference, (July 1983), Gatlin burg/Tennessee.

    Google Scholar 

  71. P.V. Dressendorfer,J.M. Soden, J.J. Harrington and T.V. Nordstrom, The Effects of Test Conditions on MOS Radiation-Hardness Results, IEEE Trans. Nucl. Sci. 28 (1981) 4281.

    Article  Google Scholar 

  72. T. D. Stanley, D. Neamen, P. Dressendorfer, J. Schwank, P. Winckert, M. Ackermann, K. Jungling, C. Hawkins and W. Graunemann, The Effect of Operating Frequency in the Radiation Induced Buildup of Trapped Holes and Interface States in MOS Devices, IEEE-Trans. Nucl. Sci. NS-32 (1985) 3982.

    Google Scholar 

  73. D.R. Schwank und W.R. Dawes Jr., Irradiation Silicon Gate MOS Device Bias Annealing, IEEE Trans. Nucl. Sci. 30 (1983) 4100.

    Article  Google Scholar 

  74. G.F. Derbenwick und B.L. Gregory, Design Optimization of Radiation-Hardened CMOS Integrated Circuits, IEEE Trans. Nucl. Sci. 22 (1975) 2208.

    Google Scholar 

  75. W.R. Dawes Jr., Tutorial Short Course, Radiation Effects Hardening Techniques, IEEE Nucl. and Space Radiation Effects Conference, Monterey/California (July 1985).

    Google Scholar 

  76. J.R. Adams, W.R. Dawes Jr. und T.S. Sanders, A Radiation Hardened Field Oxide, IEEE Trans. Nucl. Sci. 24 (1977) 2099.

    Article  Google Scholar 

  77. W.S. Kim, T.M. Mnich, W.T. Corbett, R.K. Treece, A.E. Giddings und J.L. Jorgensen, Radiation-Hard Design Principles Utilized in CMOS 8085 Microprocessor Family, IEEE Trans. Nucl. Sci. 30 (1983) 4229.

    Article  Google Scholar 

  78. B.L. Gingerich, J.M. Hermsen, J.C. Lee und J.E. Schroeder, Total Dose and Dose Rate Radiation Characterization of Epi-CMOS Radiation Hardened Memory and Microprocessor Devices, IEEE Trans. Nucl. Sci. 31 (1984) 1332.

    Article  Google Scholar 

  79. L.W. Massengill und S.E. Diehl-Nagle, Transient Radiation Upset Simulations of CMOS Memory Circuits, IEEE Trans. Nucl. Sci. 31 (1984). 1337

    Article  Google Scholar 

  80. D.J. Allen, F.N. Coppage, G.L. Hash, D.K. Holek und T.F. Wrobel, Gamma-Induced Leakage in Junction Field-Effect Transistors, IEEE Trans. Nucl. Sci. 31 (1984) 1487.

    Article  Google Scholar 

  81. T. Itoh und M. Yanai, Stability of Performance and Interfacial Problems in GaAs MESFET’s, IEEE Trans. ED, 27 (1980) 1037.

    Article  Google Scholar 

  82. C.E. Barnes, Increased Radiation Hardness of GaAs Laser Diodes at High Current, Densities, Journal of Appl. Phys. 45 (1974) 3485.

    Article  Google Scholar 

  83. J.J. Wiczer, T.A. Fischer, L.R. Dawson, G.C. Osbourn, T.E. Zipperian und C.E. Barnes, Pulsed Irradiation of Optimized, MBE Grown, AlGaAs/GaAs Radiation Hardened Photodiodes, IEEE Trans. Nucl. Sci. 31 (1984) 1477.

    Article  Google Scholar 

  84. D. Bräunig, Gamma-Dosis-Effekte in Halbleiterschaltungen, Carl CranzGesellschaft, Kursus B8.03, Weil/Rhein (Mai 1986 ).

    Google Scholar 

  85. S. Seltzer, Electron, Electron-Bremsstrahlung and Proton Depth-Dose Data for SpaceShielding Applications, IEEE-NS-26 (6) (Dec. 1979) 4896–4904.

    Google Scholar 

  86. S. Seltzer, Shieldose: A Computer Code for Space Shielding Radiation Dose Calculations, NBS Tech. Note 1116, US Dep. of Commerce (May 1980).

    Google Scholar 

  87. A. Holmes-Siedle und Roger Freeman, Radiation Effects Engineering Handbook, Final Report, ESA Contract 2871/76/NL/HP (April 1978).

    Google Scholar 

  88. D. Bräunig, F. Wulf, W. Gaebler und A. Boden, Richtliniezur Prüfung der Strahlungsfestigkeit elektronischer Bauteile, DFVLR TN 53/10, HMI-Nr. B 380 (1982).

    Google Scholar 

  89. D. Bräunig, W. Gaebler, W.R. Fahrner und H.G. Wagemann, GfW Handbuch für Datensammlung strahlungsgetesteter elektronischer Bauteile, TN 53/08, HMI B 248 (Nov. 1977), (inzwischen auf 6 Bände erweitert).

    Google Scholar 

Halbleiter- und Festkörper-Physik

  • S.M. Sze, Physics of Semiconductor Devices, Wiley and Sons, New York, 2nd Edition (1981).

    Google Scholar 

  • A.S. Grove, Physics and Technology of Semiconductor Devices, Wiley and Sons, New York (1967).

    Google Scholar 

  • S.M. Sze, VLSI Technology, Mc Graw Hill Book Company, Singapore (1983).

    Google Scholar 

  • Instabilities in Silicon Devices, ed. G. Barbottin und A. Vapaille, North Holland, Amsterdam, Vol. 1 (1986), Vol. 2 (1988).

    Google Scholar 

  • C. Kittel, Einführung in die Festkörperphysik, Oldenburg Verlag, 6. Auflage, München (1986).

    Google Scholar 

  • R. Paul, Transistoren und Thyristoren, Dr. Alfred Hüthig Verlag, Heidelberg (1977).

    Google Scholar 

Bestrahlungseffekte

  • G. Messenger und M.S. Ash, The Effects of Radiation on Electronic Systems, Van Nostrand Reinhold Company, New York (1986).

    Google Scholar 

  • V.A.J. van Lint, T.M. Flanagan, R.E. Leadon, J.A. Naber und V.C. Rodgers, Mechanisms of Radiation Effects in Electronic Materials, Wiley and Sons, Vol. 1, New York (1980).

    Google Scholar 

  • N.J.Rudie, Principles and Techniques of Radiation Hardening, Western Periodicals Company, California, 2nd Edition (1980), 3 Bände.

    Google Scholar 

  • IEEE-Trans. Nucl. Sci. (Dez.-Ausgaben)

    Google Scholar 

  • V.S. Vavilov, Effects of Radiation of Semiconductors, Consultants Bureau, New York (1965).

    Google Scholar 

  • L.W. Ricketts, Fundamentals of Nuclear Hardening of Electronic Equipment, Wiley and Sons, New York (1972).

    Google Scholar 

  • T.P. Ma und P.V. Dressendorfer, Ionizing Radiation Effects in MOS Devices and Circuits, Wiley and Sons, New York (1988).

    Google Scholar 

  • J.R. Srour, Basic Mechanisms of Radiation Effects on Electronic Materials, Devices and Integrated Circuits, IEEE NSREC Short Course, Gatlinburg TN (July 1983).

    Google Scholar 

  • J.W. Corbett, Electron Radiation Damage in Semiconductors and Metals, Academic Press, New York (1966).

    Google Scholar 

Kern- und Teilchen-Physik

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bräunig, D. (1989). Literatur. In: Wirkung hochenergetischer Strahlung auf Halbleiterbauelemente. Mikroelektronik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-51109-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-51109-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50891-5

  • Online ISBN: 978-3-642-51109-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics