Skip to main content

Oscillatory Control of Glycolysis as a Model for Biological Timing Processes

  • Conference paper
Quantitative Biology of Metabolism

Abstract

Oscillatory control of glycolysis, the hitherto best known biochemical oscillator, is proposed as a model for biological timing systems. It works in yeast cells, cell-free extracts of yeast cells and beef heart muscle and in rat liver mitochondria. It affects not only glycolytic intermediates like sugar phosphates, pyridine and adenine nucleotides, but also glucose incorporation in yeast and ion transport and water binding in mitochondria. The glycolytic oscillator can be reset by adding control chemicals. Its mechanism depends essentially on the control characteristics of one or a few enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aschoff, J., u. R. Wever: Naturw. 49, 337 (1962).

    Article  Google Scholar 

  2. Bünning, E.: The Physiological Clock. New York: Springer 1967.

    Google Scholar 

  3. Chance, B.: In: The Mechanism of Enzyme Action. (W. D. McElroy and B. Glass, Eds.) Baltimore 1954.

    Google Scholar 

  4. Duysens, L. N. M., and J. Amesz: BBA 24, 19 (1957).

    Article  PubMed  CAS  Google Scholar 

  5. Matthaei, J. H.: (personal communication).

    Google Scholar 

  6. Ghosh, A., and B. Chance: BBRC 16, 174 (1964).

    PubMed  CAS  Google Scholar 

  7. Chance, B., B. Hess and A. Betz: BBRC 16, 182 (1964).

    PubMed  CAS  Google Scholar 

  8. Frenkel, R.: ABB 115, 112 (1966).

    PubMed  CAS  Google Scholar 

  9. Pressman, B. C.: Federation Proceedings 24, 425 (1965).

    Google Scholar 

  10. Lardy, H. A.: Federation Proceedings 24, 424 (1965).

    Google Scholar 

  11. Betz, A.: Physiol. Plant. 19, 1049 (1966).

    Article  CAS  Google Scholar 

  12. Hommes, F. A.: ABB 109, 168 (1965).

    PubMed  CAS  Google Scholar 

  13. Maitra, P.: BBRC 25, 462 (1966).

    PubMed  CAS  Google Scholar 

  14. Pye, K. E.: (personal communication).

    Google Scholar 

  15. Boiteux, A., and B. Hess: 4. Meeting of the Fed. of Europ. Biochem. Soc. (FEBS) Oslo 1967.

    Google Scholar 

  16. Chance, B., B. Schoener and S. Elsaesser: Proc. Ntl. Acad. Sci. 52, 337 (1964).

    Article  CAS  Google Scholar 

  17. Betz, A., and B. Chance: ABB 109, 585 (1965).

    PubMed  CAS  Google Scholar 

  18. Betz, A., and B. Chance: ABB 109, 579 (1965).

    PubMed  CAS  Google Scholar 

  19. Betz, A., Europ. J. Biochem. 4, 354 (1968).

    Article  PubMed  CAS  Google Scholar 

  20. Betz, A., and B. Chance and R. Hinrichs: Europ. J. Biochem. 5, 154 (1968).

    Article  PubMed  CAS  Google Scholar 

  21. Higgins, J.: Proc. Natl. Acad. Sci. 51, 989 (1964).

    Article  PubMed  CAS  Google Scholar 

  22. Atkinson, D. E.: Regulation of Enzyme Activity. In: Annual Review of Biochemistry 35, 611 (1966).

    Google Scholar 

  23. Moore, C. L., A. Betz and B. Chance: In: Control of Energy Metabolism (B. Chance, R. W. Estabrook and J. R. Williamson, eds.), p. 97. New York 1965.

    Google Scholar 

  24. Betz, A., and C. L. Moore: ABB 120, 268 (1967).

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1968 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Betz, A. (1968). Oscillatory Control of Glycolysis as a Model for Biological Timing Processes. In: Locker, A. (eds) Quantitative Biology of Metabolism. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-51065-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-51065-6_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-04301-0

  • Online ISBN: 978-3-642-51065-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics