Skip to main content

Parallel Computing from Fermion Systems to Hydrodynamics: Water as an Example

  • Conference paper
Supercomputer Simulations in Chemistry

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 44))

Abstract

With the use of attached parallel processors as described by Clementi in this conference, we have carried out a program where starting from the Schrödinger equation, we can obtain useful information for quite complicated real macroscopic systems. As an example, we have employed configuration interaction method to calculate the potential function for the water-water interaction, which was then used in Monte Carlo and molecular dynamics simulations to study static and dynamic properties of liquid water. Various hydrodynamic constants, such as viscosity, thermal conductivity, and sound speed were obtained from Green-Kubo relations and the density and current correlations of the simulated water. Effects due to many-body interactions and intramolecular vibrations are reported. Correlation functions resulting from solving the fluctuating hydrodynamic equations for a dilute gas subjected to a temperature gradient are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. Matsuoka, E. Clementi, and M. Yoshimine, J. Chem. Phys. 64, 1351 (1976).

    Article  CAS  Google Scholar 

  2. W.S. Benedict, N. Gailar, and E.K. Plyler, J. Phys. Chem. 24, 1139 (1956).

    Article  CAS  Google Scholar 

  3. T.R. Dyke, K.M. Mack, and J.S. Muenter, J. Chem. Phys. 66, 498 (1977).

    Article  CAS  Google Scholar 

  4. G.C. Lie, E. Clementi, and M. Yoshimine, J. Chem. Phys. 64, 2314 (1976).

    Article  CAS  Google Scholar 

  5. M. Wojcik, IBM Technical Report KGN-28 (1985).

    Google Scholar 

  6. A.H. Narten and H.A. Levy, J. Chem. Phys. 55, 2263 (1971).

    Article  CAS  Google Scholar 

  7. G.C. Lie, IBM Technical Report KGN-52 (1986).

    Google Scholar 

  8. G. Palinkas, E. Kaiman, and P. Kovacs, Mol. Phys. 34, 525 (1977).

    Article  CAS  Google Scholar 

  9. A.K. Soper and R.N. Silver, Phys. Rev. Lett. 49, 471 (1982).

    Article  CAS  Google Scholar 

  10. A.H. Narten, J. Chem. Phys. 56, 5681 (1972).

    Article  CAS  Google Scholar 

  11. N.E. Dosey, Properties of Ordinary Water Substance (Reihold, New York, 1940).

    Google Scholar 

  12. J.P. Boon and S. Yip, Molecular Dynamics (McGraw-Hill, New York, 1980).

    Google Scholar 

  13. C.M. Davis and J. Jarzynski, in Water: A Comprehensive Treatise, Vol. 1, edited by F. Franks (Plenum Press, New York, 1972).

    Google Scholar 

  14. J. Rouch, C.C. Lai, and S.H. Chen, J. Chem. Phys. 66, 5031 (1977).

    Article  CAS  Google Scholar 

  15. G.S. Kell, in Water: A Comprehensive Treatise, Vol. 1, edited by F. Franks (Plenum Press, New York, 1972).

    Google Scholar 

  16. R.W. Impey, P.A. Madden, and I.R. McDonald, Mol. Phys. 46, 513 (1982).

    Article  CAS  Google Scholar 

  17. J. Teixeira, M.C. Bellissent-Funel, S.H. Chen, and B. Dorner, Phys. Rev. Lett. 54, 2681 (1985).

    Article  CAS  Google Scholar 

  18. G.S. Kell and E. Whalley, Philos. Trans. R. Soc. London A258, 565 (1965).

    Article  Google Scholar 

  19. E. Clementi and G. Corongiu, Int. J. Quantum Chem.: Quantum Bio. Sym. 10, 31 (1983).

    CAS  Google Scholar 

  20. G.C. Lie, G. Corongiu, and E. Clementi, J. Phys. Chem. 89, 4131 (1985).

    Article  CAS  Google Scholar 

  21. S.W. de Leeuw, J.W. Perram, and E.R. Smith, Proc. Phys. Soc. Lond. A373, 27 (1980); ibid. A373, 57 (1980).

    Google Scholar 

  22. J. Detrich, G. Corongiu, and E. Clementi, Chem. Phys. Lett. 112, 426 (1984).

    Article  CAS  Google Scholar 

  23. D. Eisenberg and W. Kauzmann, The Structure and Properties of Water (Oxford University, New York, 1969).

    Google Scholar 

  24. G.C. Lie and E. Clementi IBM Technical Report KGN-36 (1985); to appear in Phys. Rev. A (1986).

    Google Scholar 

  25. R.J. Bartlett, I. Shavitt, and G.D. Purvis, J. Chem. Phys. 71, 281 (1979); Professor Shavitt has pointed out in the conference that he has obtained an even better potential.

    Article  CAS  Google Scholar 

  26. W.E. Thiessen and A.H. Narten, J. Chem. Phys. 77, 2656 (1982).

    Article  CAS  Google Scholar 

  27. P.H. Beren, D.H.J. Mackay, G.M. White, and K.R. Wilson, J. Chem. Phys. 79, 2375 (1983).

    Article  Google Scholar 

  28. G. Nicolis and I. Prigogine, Self Organization in Nonequilibrium System, (Wiley, New York, 1977).

    Google Scholar 

  29. For review, see A.M. Tremblay, in Recent Development in Nonequilibrium Thermodynamics J. Casas-Vasquez, D. Jou, and G. Lebon ed. (Springer Verlag, Berlin, 1984).

    Google Scholar 

  30. T.R. Kirkpatrick, E.G.D. Cohen, and J.R. Dorfman, Phys. Rev. Lett. 44, 472 (1980).

    Article  CAS  Google Scholar 

  31. T.R. Kirkpatrick, E.G.D. Cohen, and J.R. Dorfman, Phys. Rev. A26, 995 (1982).

    Google Scholar 

  32. D. Ronis, I. Procaccia, and I. Oppenhein, Phys. Rev. A19, 1324 (1979).

    Google Scholar 

  33. A.M. Tremblay, M. Arai, and E.D. Siggia, Phys. Rev. A23, 1451 (1981).

    Google Scholar 

  34. G. Van Der Zwan, D. Bedaus, and P. Mazur, Physica 107A, 491 (1981).

    Google Scholar 

  35. T.R. Kirkpatrick, E.G.D. Cohen, and J.R. Dorfman, Phys. Rev. A26, 950 (1982).

    Google Scholar 

  36. D. Beysens, Y. Garrabos, and G. Zalczer, Phys. Rev. Lett. 45, 403 (1980).

    Article  Google Scholar 

  37. R. Penney, H. Kiefte, and J.M. Clouter, Bull. Can. Ass. Physicists 39, BB8 (1983).

    Google Scholar 

  38. A. Tenebaum, G. Ciccotti, and R. Gällico, Phys. Rev. A25, 2778 (1982).

    Google Scholar 

  39. C. Trozzi and G. Ciccotti, Phys. Rev. A29, 916 (1983).

    Google Scholar 

  40. M. Mareschal and E. Kestemont, Phys. Rev. A30, 1158 (1984).

    Google Scholar 

  41. P.G. Wolynes, Phys. Rev. A13, 1235 (1976).

    Google Scholar 

  42. G. Satten and D. Ronis, Phys. Rev. A26, 940 (1982).

    Google Scholar 

  43. M.M. Mansour, J.W. Turner, and G. Nicolis, to be published.

    Google Scholar 

  44. L.D. Landau and E.M. Lifshitz, Fluid Mechanics, 3rd Edition (Pergamon Press, New York, 1959).

    Google Scholar 

  45. F.H. Stillinger and A. Rahman, J. Chem. Phys. 60, 1545 (1974).

    Article  CAS  Google Scholar 

  46. H. Kistenmacher, G.C. Lie, H. Popkie, and E. Clementi, J. Chem. Phys. 61, 546 (1974).

    Article  CAS  Google Scholar 

  47. G.S. Kell, G.E. Malaurin, and E. Whalley, J. Chem. Phys. 48, 3805 (1968).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wojcik, M., Corongiu, G., Detrich, J., Mansour, M.M., Clementi, E., Lie, G.C. (1986). Parallel Computing from Fermion Systems to Hydrodynamics: Water as an Example. In: Dupuis, M. (eds) Supercomputer Simulations in Chemistry. Lecture Notes in Chemistry, vol 44. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-51060-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-51060-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-17178-2

  • Online ISBN: 978-3-642-51060-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics