Skip to main content

Some Aspects on the History of Computational Quantum Chemistry in view of the Development of the Supercomputers and Large-Scale Parallel Computers

  • Conference paper

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 44))

Abstract

When Max Planck1 introduced the quantum postulate E = hv in 1900, the main purpose was to give a theoretical description of the black-body radiation in agreement with the experimental experience. When Albert Einstein2 in 1905 introduced the quantization of the electromagnetic waves according to the law E = hv, the idea was to give a theoretical explanation of the photo-electric effect. When Niels Bohr3 in 1913 developed the first model of the hydrogen atom based on the quantization of angular momenta, pa = nh/2π, the success was guaranteed by the fact that his theoretical results were in agreement with the experimental spectra. Somewhat later Sommerfeld4 introduced the three quantum numbers (n, l, m) describing the elliptical orbits, and in 1918 he could successfully explain the fine-structure of the hydrogen atom spectra by using the special theory of relativity and the fine-structure constant α = 2πe2/hc = 1/137.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   159.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Planck, Verh. Dt. Phys. Ges. 2, 202 (1900).

    CAS  Google Scholar 

  2. A. Einstein, Ann der Physik (Leipzig) 17, 132 (1905).

    Article  CAS  Google Scholar 

  3. N. Bohr, Phil. Mag. (6) 26, 1 (1913).

    CAS  Google Scholar 

  4. A. Sommerfeld, Sitz. ber. Bayer Akad. Wiss. (Munich), Dec. 1915, 425; see also “Atombau und Spektrallinien,” (Vieweg und Sohn, Brauschweig (1919); Z. Phys. 1, 135 (1920).

    Google Scholar 

  5. G.N. Lewis, J. Amer. Chem. Soc. 38, 762 (1916); I. Langmuir, J. Amer. Chem Soc. 41, 868 (1919).

    Article  CAS  Google Scholar 

  6. M.L. Huggins, Doctoral Thesis (1918); see also Am. Scientist 50, 485 (1962).

    CAS  Google Scholar 

  7. W. Pauli, Z. Phys. 31, 765 (1925).

    Article  CAS  Google Scholar 

  8. N. Bohr, Drei Aufsätze über Spektren und Atomban (Wieweg und Sohn, Braunschweig) 1922; see also Collected Works, vol. 4, The Periodic System 1920–1923 (Ed. J. Rud Nielsen, North Holland, Amsterdam, 1977); see also P.O. Löwdin, Int. J. Quantum Chem. 3S, 331 (1969).

    Google Scholar 

  9. R. Courant and D. Hilbert, “Methods of Mathematical Physics,” English Edition (Interscience, New York, 1953).

    Google Scholar 

  10. E. Schrödinger, Ann. der Physik 79, 361 (1926).

    Article  Google Scholar 

  11. W. Heisenberg, Z.F. Physik 33, 879 (1925); M. Born, W. Heisenberg and P. Jordan, Z. F. Physik 35, 557 (1926).

    Article  CAS  Google Scholar 

  12. P.A.M. Dirac, Proc. Roy. Soc. London, A113, 621 (1926).

    Google Scholar 

  13. E. Schrödinger, Ann. der Physik 79, 734 (1926); see also J. von Neumann, Mathematische Grundlagen der Quantemechanik (Springer, Berlin, 1932).

    Article  Google Scholar 

  14. W. Heisenberg, Z. Physik 43, 172 (1927).

    Article  Google Scholar 

  15. W. Heisenberg, Z. Physik 38, 411 (1926); 39, 499 (1926).

    Article  Google Scholar 

  16. N. Bohr

    Google Scholar 

  17. W. Heitier and F. London, Z. Physik 44, 455 (1927).

    Article  Google Scholar 

  18. E.A. Hylleraas, Z. Physik 48, 81 (1928)

    Article  Google Scholar 

  19. E.A. Hylleraas, “Abhandlungen aus den Jahren 1926–37,” (Oslo, 1956)

    Google Scholar 

  20. Revs. Mod. Phys. 35, No. 3 (July, 1963).

    Google Scholar 

  21. Y. Sugiura, Z. Physik 45 484 (1927).

    Article  CAS  Google Scholar 

  22. H.M. James and A.S. Coolidge, J. Chem. Phys. 1, 825 (1933); 3 129 (1935).

    Article  CAS  Google Scholar 

  23. G.E. Uhlenbeck and S. Goudsmit, Naturwiss. 13, 953 (1925); Nature 117, 264 (1926).

    Article  CAS  Google Scholar 

  24. W. Heisenberg, Z. Physik 41, 239 (1927).

    Article  CAS  Google Scholar 

  25. P.O. Löwdin, Revs. Mod. Phys. 34, 80 (1962).

    Article  Google Scholar 

  26. J.C. Slater, Phys. Rev. 34, 1293 (1929).

    Article  CAS  Google Scholar 

  27. N. Bohr, Proc. Phys. Soc. (London) 35, 296 (1923).

    Google Scholar 

  28. D.R. Hartree, Proc. Cambridge Phil. Soc. 24, 89 (1928).

    Article  CAS  Google Scholar 

  29. M. Born and J.R. Oppenheimer, Ann. der Physik (Liepzig) 84, 457 (1927).

    Article  CAS  Google Scholar 

  30. J.C. Slater, Phys. Rev. 35, 210 (1930).

    Article  Google Scholar 

  31. V. Fock, Z. Physik 61, 126 (1930).

    Article  Google Scholar 

  32. P.A.M. Dirac, Proc. Cambridge Phil. Soc. 26, 376 (1930); 27, 240 (1931).

    Article  CAS  Google Scholar 

  33. D.R. Hartree, Mem. Proc. Lit. Phil. Soc. Manchester 77, 91 (1933).

    Google Scholar 

  34. V. Fock and M. Petrashen, Phys. Zs. Sow. 6, 368 (1934); 8, 547 (1935).

    Google Scholar 

  35. T.A. Koopmans, Physica 1, 104 (1933).

    Article  CAS  Google Scholar 

  36. D.R. Hartree, “The Calculation of Atomic Structures” (John Wiley and Sons, New York, 1957).

    Google Scholar 

  37. P.O. Löwdin, in “NAS-ONR Report Shelter Island Conference 1951,” 187 (1951); Quart. Appl. Math. 10, 97 (1952).

    Google Scholar 

  38. R.S. Mulliken, Phys. Rev. 32, 186 (1928).

    Article  CAS  Google Scholar 

  39. F. Hund, Z. Physik 51, 759 (1928); see also J.E. Lennard-Jones, Trans. Faraday Soc. 25, 668 (1929).

    Article  CAS  Google Scholar 

  40. F. Bloch, Z. Physik 52, 355 (1929); 57, 545 (1929).

    Article  Google Scholar 

  41. J.C. Slater, Phys. Rev. 35, 210 (1930).

    Article  Google Scholar 

  42. D.R. Inglis, Phys. Rev. 46, 135 (1934); J.H. Van Vleck and A. Sherman, Rev. Mod. Phys. 7, 167 (1935); J.H. Van Vleck, Phys, Rev. 49, 232 (1936).

    Article  Google Scholar 

  43. J.C. Slater, Phys. Rev. 37, 481 (1931).

    Article  CAS  Google Scholar 

  44. L. Pauling, Proc. Nat. Acad. SW U.S. 14, 359 (1928); J. Am. Chem. Soc. 53, 1367 (1931).

    Article  CAS  Google Scholar 

  45. P.O. Löwdin, J. Chem. Phys. 21, 496 (1953).

    Article  Google Scholar 

  46. E. Hückel, Z. Physik 70, 204 (1931); 72, 310 (1931).

    Article  Google Scholar 

  47. E. Hückel, Z. Physik 76, 628 (1932).

    Article  Google Scholar 

  48. G.W. Wheland and L. Pauling, J. Am. Chem. Soc. 57, 2091 (1939).

    Google Scholar 

  49. G.W. Wheland, J. Am. Chem. Soc. 63, 2025 (1941).

    Article  CAS  Google Scholar 

  50. K. Fukui, T. Yonezawa and H. Shingu, J. Chem. Phys. 20, 722 (1952); K. Fukui, T. Yonezawa, C. Nagata and H. Shingu, J. Chem. Phys. 22, 1433 (1954); K. Fukui, Theory of Orientation and Stereoselection, (Springer Verlag, Heidelberg, 1970, 1975).

    Article  CAS  Google Scholar 

  51. See e.g. A. Pullman and B. Pullman, Quantum Biochemistry, (John Wiley, New York, 1963), and many later publications.

    Google Scholar 

  52. R.B. Woodward and R. Hoffmann, J. Am. Chem. Soc. 87, 395 (1965).

    Article  CAS  Google Scholar 

  53. W. Heitler and G. Runier, Nachr. Ges. Wiss. Göttingen 277 (1930).

    Google Scholar 

  54. J.C. Slater, Phys. Rev. 37, 481 (1931), particularly p. 489.

    Article  CAS  Google Scholar 

  55. L. Pauling J. Chem. Phys. 1, 280 (1933), and a series of papers in J. Chem. Phys. and J. Am. Chem. Soc.

    Article  CAS  Google Scholar 

  56. G. Rumer, Nachr. Ges. Wiss. Göttingen 337, 1932.

    Google Scholar 

  57. L. Pauling, J. Chem. Phys. 1, 280 (1933).

    Article  CAS  Google Scholar 

  58. F.A. Matsen, A.A. Cantu and R.D. Poshusta, J. Phys. Chem. 70, 1558 (1966); M. Kotani, K. Ohno and K. Kayama, “Quantum Mechanics of Electronic Structure of Simple Molecules” in Encyclopedia of Physics, 37, 2 (Springer-Verlag, Berlin, 1961) especially pp. 118-142; F.A. Matsen, “Spin-Free Quantum Chemistry” in Advances in Quantum Chemistry, 1, 59-113, (ed. P.O. Löwdin, Academic Press, New York, 1964). Matsen reproduces Kotani’s table in an appendix and shows how to derive non-diagonal matrix elements from the diagonal elements given by Kotani; P.O. Löwdin, Colloq. Inter. Centre. Natl. Rech. Sc. (Paris) 82, 23 (1958).

    Article  CAS  Google Scholar 

  59. H. Shull, Int. J. Quantum Chem. 3, 523 (1969).

    Article  CAS  Google Scholar 

  60. J.H. Van Vleck and A. Sherman, Revs. Mod. Phys. 7, 167 (1935).

    Article  Google Scholar 

  61. M. Kotani and co-workers, J. Phys. Soc. Japan 12, 707, 135 (1957); M. Kotani, Handbuch der Physik (ed. S. Flügge, Springer, Berlin, 1961), vol. 37, part II, p. 124; R. McWeeny, Proc. Roy. Soc. (London) A253, 242 (1959); Revs. Mod. Phys. 32, 335 (1960); Phys. Rev. 126 1028 (1962); etc.; F.A. Matsen, J. Phys. Chem. 68, 3282 (1964), F.A. Matsen, A.A. Cantu and R.D. Poshusta, J. Phys. Chem. 70, 1558 (1966); F.A. Matsen, J. Phys. Chem. 70, 1568 (1966); F.A. Matsen and A.A. Cantu, J. Phys. Chem. 72, 21 (1968); M. Simonetta and A. Gavezzotti, Adv. Quantum Chem. (ed. P.O. Löwdin, Academic Press, New York, 1980) 12, 103; and numerous other references.

    Article  CAS  Google Scholar 

  62. W.A. Goddard III, Phys. Rev. 157, 81 (1967), 169, 120 (1968); J. Chem. Phys. 48, 1008, 5337 (1968); W.E. Palke and W.A. Goddard III, J. Chem. Phys. 50, (1969).

    Article  CAS  Google Scholar 

  63. P.O. Löwdin and O. Goscinski, Int. J. Quantum Chem. 3 S, 533 (1970).

    Google Scholar 

  64. L. Pauling, The Nature of the Chemical Bond (2nd ed., Cornell University Press, 1941).

    Google Scholar 

  65. M. Kotani, Proc. Phys. Math. Soc. Japan 19, 460 (1937); M. Kotani and M. Siga, Proc. Phys. Math. Soc. Japan 19, 471 (1937); A. Amemiya, Bull. Phys. Math. Soc. Japan 17, 67 (1943); M. Kotani, A. Amemiya, E. Ishiguro and T. Kimura, “Table of Molecular Integrals” (Maruzen, Tokyo, 1955).

    CAS  Google Scholar 

  66. P.O. Löwdin, “A Theoretical Investigation into Some Properties of Ionic Crystals” (Thesis; Almqvist and Wiksels, Uppsala, 1948).

    Google Scholar 

  67. A.S. Coolidge, Phys. Rev. 42, 189 (1932); R. Landshoff, Z. Physik 102, 201 (1936); Phys. Rev. 52, 246 (1937).

    Article  CAS  Google Scholar 

  68. S.O. Lundquist and P.O. Löwdin, Ark. Fys. 3, 147 (1951) P.O. Löwdin, Adv. Phys. 5, 1 (1956); R.R. Sharma, Phys. Rev. A13, 517 (1976); H.W. Jones and C.A. Weatherford, Int. J. Quantum Chem. Symp. 12, 483 (1978); H.W. Jones, Int. J. Quantum Chem. 18, 709 (1980); H.W. Jones, Int. J. Quantum Chem. 21, Conference on ETO Multicenter Integrals (Reidel, Dordrecht, 1982); E.J. Weniger and E.O. Steinborn, Phys. Rev. A 28, 2026 (1983); H.W. Jones, Int. J. Quantum Chem. 23, 953 (1983); H.W. Jones, Phys. Rev. A 30, 1 (1984).

    Google Scholar 

  69. See H.W. Jones, Proc. 5th ICQC, Montreal, Int. J. Quantum Chem. 29, 177 (1986).

    Article  CAS  Google Scholar 

  70. P.O. Löwdin, Ark. Mat. Astr. Fys. 30, 1 (1948); J. Chem Phys. 18, 365 (1950).

    Google Scholar 

  71. J.C. Slater and G.F. Koster, Phys, Rev. 94, 1498 (1954).

    Article  CAS  Google Scholar 

  72. R. Pauncz, J. de Heer and P.O. Löwdin, J. Math. Phys. 1, 461 (1960); J. Chem. Phys. 36, 2247, 2257 (1962).

    Article  Google Scholar 

  73. P.O. Löwdin, Int. J. Quantum Chem. 1 S, 811 (1967).

    Article  Google Scholar 

  74. R.H. Parmenter, Phys. Rev. 86, 552 (1952).

    Article  CAS  Google Scholar 

  75. P.O. Löwdin, Ann. Rev. Phys. Chem. 11, 107 (1960); J. Appl. Phys. S33, 251 (1962).

    Article  Google Scholar 

  76. P.O. Löwdin, Adv. Phys. 5, 1 (1956), particularly p. 49.

    Article  Google Scholar 

  77. P.O. Löwdin, Adv. Quantum Chem. 5, 185 (Academic Press, New York, 1970).

    Google Scholar 

  78. R. Feynman, “Surely You’re Joking, Mr. Feynman” (W. W. Norton, New York, 1985).

    Google Scholar 

  79. C.A. Coulson, Proc. Cambridge Phil. Soc. 34, 204 (1938).

    Article  CAS  Google Scholar 

  80. R.S. Mulliken, J. Chem. Phys. 46, 497, 675 (1949).

    CAS  Google Scholar 

  81. C.A. Coulson and H.C. Longuet-Higgins, proc. Roy. Soc. (London) A191, 39; 192, 16 (1947); 193, 447, 456 (1948); 195, 188 (1948).

    Google Scholar 

  82. J. Lennard-Jones, Proc. Roy. Soc. London A202, 155 (1950); G.G. Hall and C.C.J. Roothaan, Revs. Mod. Phys. 23 69 (1951).

    Google Scholar 

  83. P.O. Löwdin, Phys. Rev. 97, 1490 (1955); R. McWeeny, Proc. Roy. Soc. London A223, 63, 306 (1954).

    Article  Google Scholar 

  84. NAS-ONR Report from the Shelter Island Conference in 1951.

    Google Scholar 

  85. P.O. Löwdin, réf. 84, p. 187.

    Google Scholar 

  86. H. Shull and P.O. Löwdin, J. Chem. Phys. 25, 1035 (1956)

    Article  CAS  Google Scholar 

  87. J.C. Slater, Phys. Rev. 81, 385 (1951); 82 538 (1951); Revs. Mod. Phys. 25, 199 (1953).

    Article  CAS  Google Scholar 

  88. H. Shull and P.O. Löwdin, J. Chem. Phys. 23, 1362 (1955)

    Article  CAS  Google Scholar 

  89. J.C. Slater, Phys. Rev. 81, 385 (1951); 82, 538 (1951); Revs. Mod. Phys. 25, 199 (1953).

    Article  CAS  Google Scholar 

  90. H. Shull and P.O. Löwdin, J. Chem. Phys. 23, 1362 (1955)

    Article  CAS  Google Scholar 

  91. S.F. Boys, Proc. Roy. Soc. (London), A200, 542 (1950); Svensk Kern. Tidskr. 67, 367 (1955); Proc. Roy. Soc. (London) A258, 402 (1960); Revs. Mod. Phys. 32, 296 (1960); see also Boys, Cook, Reeves and Shavitt, Nature 178, 1207 (1956); S.F. Boys and G.B. Cook, Revs. Mod. Phys. 32, 285 (1960).

    Google Scholar 

  92. R.G. Parr, J. Chem. Phys. 20, 1499 (1952); R.G. Pariser and R.G. Parr, J. Chem. Phys. 21, 466 (1953); J.A. Pople, Trans. Far. Soc. 49, 1375 (1953); R.G. Parr and R. Pariser, J. Chem. Phys. 23, 711 (1955); J.A. Pople, Proc. Phys. Soc. (London) A68, 81 (1955); J. Phys. Chem. 61, 6 (1957).

    Article  CAS  Google Scholar 

  93. P.O. Löwdin, Proc. Int. Conf. Theor. Physics Japan in 1953, 13 (1954); Svensk Kern. Tidskr. 67, 380 (1955).

    Google Scholar 

  94. I. Fischer-Hjalmars, Adv. Quantum Chem. 2, 25 (Academic Press, New York, 1965); K. Ohno, Adv. Quantum Chem. 3, 240 (Academic Press, New York, 1967).

    Google Scholar 

  95. Proc. Symp. Mol. Physics at Nikko, Japan, in 1953; Report Symp. Quantum Theory of Molecules in Stockholm and Uppsala, Svensk Kemisk Tidskr. 67, 365-398 (1955); Report Molecular Quantum Mechanics Conf. in Austin, Texas, 1955, Texas J. Science 8 (1956); Report Paris Conf. Mol. Wave Mechanics 1957, (Ed. du Centre Nat. Rech. Sci. 82 (1958); Proc. 1958 Boulder Conf. Mol. Physics, Revs. Modern Phys. 32 (1960).

    Google Scholar 

  96. E. Wigner, Phys. Rev. 46, 1002 (1933); Trans Faraday Soc. 34, 678 (1938).

    Article  Google Scholar 

  97. P.O. Löwdin, J. Chem. Phys. 19, 1570, 1579 (1951).

    Article  Google Scholar 

  98. P.O. Löwdin, Proc. Symp. Mol. Physics at Nikko, Japan, in 1953, 13 (1954); Phys. Rev. 97, 1509 (1955); Proc. 10th Solvay Conf., 1954, p. 71 (Inst. Internat. de Physique Solvay. 10e Conseil de Physique Tenu a Bruxelles 1954: Les Electrons dans le Métaux, Rapports et Discussions, Bruxelles 1955); Rev. Mod. Physl 32, 328 (1960).

    Google Scholar 

  99. T. Itoh and H. Yoshizumi, J. Phys. Soc. Japan 10, 201 (1955); J. Chem. Phys. 23, 412 (1955); Busseiron Kenkyu 83, 13 (1955).

    Article  Google Scholar 

  100. R. Lefebvre, H.H. Dearman and H.M. McConnell, J. Chem. Phys. 32, 176 (1960); P.O. Löwdin, R. Pauncz and J. de Heer, J. Chem. Phys. 36, 2247, 2257 (1962); J. de Heer, J. Chem. Phys. 37, 2080 (1962); R. Pauncz, J. Chem. Phys. 37, 2739 (1962); J. de Heer, Rev. Mod. Phys. 35, 631 (1963); R. Pauncz, in Molecular Orbitals in Chemistry, Physics, and Biology, ed. P.O. Löwdin, Academic Press, New York, 1964, p. 433; Tetrahedron 19, Suppl. 2, 43 (1963); J. Chem. Phys. 43, S69 (1965); O. Goscinski and J.L. Calais, Arkiv Fysik 29, 135 (1965); J. de Heer and R. Pauncz, J. Chem. Phys. 39, 2314 (1963); R. Pauncz, Alternant Molecular Orbital Method, W.B. Saunders, Philadelphia, 1967; J.L. Calais, Arkiv Fysik, 28, 479, 511, 539 (1965); 29, 255 (1965); J.L. Calais, Int. J. Quantum Chem. 13, 661 (1967). For more complete references, see I. Mayer, Adv. Quantum Chem. 12, 189 (Academic Press, New York, 1980).

    Article  CAS  Google Scholar 

  101. P.O. Löwdin, Texas J. Science 8, 163 (1956).

    Google Scholar 

  102. A. Fröman, Phys. Rev. 112, 870 (1958).

    Article  Google Scholar 

  103. J. Linderberg and H. Shull, J. Mol. Spec. 4, 30 (1960).

    Google Scholar 

  104. K.A. Brueckner, C.A. Levinson and H.M. Mahmoud, Phys. Rev. 95, 217 (1954); K.A. Brueckner, Phys. Rev. 96, 508 (1954); 97, 1353 (1955); 100, 36 (1955); K.A. Brueckner and C.A. Levinson, Phys. Rev. 97, 1344 (1955); L.S. Rodberg, Ann. Phys. (N. Y. ) 2, 199 (1957); to mention only a selection of the rich literature on this subject.

    Article  CAS  Google Scholar 

  105. P.O. Löwdin, J. Math. Phys. 3 1171 (1962).

    Article  Google Scholar 

  106. H.A. Bethe, Phys. Rev. 103, 1353 (1956); J. Goldstone, Proc. Roy. Soc. (London), Ser. A, 238, 511 (1957).

    Article  CAS  Google Scholar 

  107. R.K. Nesbet, Proc. Roy. Soc. (London), Ser. A, 230, 312 (1955).

    Article  CAS  Google Scholar 

  108. L. Brillouin, Actualités Sci. et Ind. 71 (1933); No. 159 (1934); C. Moller and M.S. Plesset, Phys. Rev. 46, 618 (1934). For a current generalization, see P. O. Löwdin, Proc. Ind. Acad. Sciences (Chem. Sci.) 96 121 (1986).

    Google Scholar 

  109. R.K. Nesbet, Proc. Roy. Soc. (London) A230, 312 (1955); R.K. Nesbet, Quarterly Progress Report, Solid State and Molecular Theory Group, MIT, July 15, p. 3, Oct. 15, p. 47, unpublished, (1956); R.K. Nesbet, Phys. Rev. 109, 1632 (1958); R.K. Nesbet, Phys. Rev. 118, 681 (1960); R.K. Nesbet, Rev. Mod. Phys. Mod. Phys. 33, 28 (1961).

    Google Scholar 

  110. O. Sinanoglu, Proc. Roy. Soc. (London) A260, 379 (1961); O. Sinanoglu, J. Chem. Phys. 36, 706 and 3198 (1962); O. Sinanoglu, Adv. Chem. Phys. 6, 315 (1968).

    Google Scholar 

  111. P.O. Löwdin, Adv. Chem. Phys. 2, 207 (ed. I. Prigogine, Interscience, New York, 1959); see also Proc. 1958 Robert A. Welch Foundation Conf. Chem. Research, II. Atomic Structure, 5 (1960).

    Google Scholar 

  112. J.C. Slater, Phys. Rev. 91, 528 (1953).

    Article  CAS  Google Scholar 

  113. P.O. Löwdin, Phys. Rev. 97, 1474 (1955).

    Article  Google Scholar 

  114. K Husimi, Proc. Phys. Math. Soc. Japan 22, 264 (1940).

    Google Scholar 

  115. P.O. Löwdin, J. Phys. Chem. 61, 55 (1957).

    Article  Google Scholar 

  116. P.O. Löwdin and H. Shull, Phys. Rev. 101, 1730 (1956).

    Article  Google Scholar 

  117. E. Davidson, Reduced Density Matrices in Quantum Chemistry (John Wiley, New York, 1963).

    Google Scholar 

  118. See Proc. 1985 Kingston Symposium on Reduced Density Matrices, the Representability Problem, and the Electron Density Functional Method.

    Google Scholar 

  119. C.C.J. Roothaan, J. Chem. Phys. 19, 1450 (1951); K. Ruedenberg, J. Chem. Phys. 19, 1459 (1951); and numerous subsequent papers in J. Chem. Phys.

    Article  Google Scholar 

  120. F.A. Matsen, “Tables of Molecular Integrals” (Austin, Texas, 1955); see also H. Preuss, Integraltafeln zur Quantenchemi, 4 vols. (Springer, Berline 1956–61).

    Google Scholar 

  121. Proc. 1958 Boulder Conference, Revs. Modern Phys. 32, (1960).

    Google Scholar 

  122. P.O. Löwdin, Proc. 1985 Sanibel Symposia (Quantum Chemistry), Int. J. Quantum Chem. S 19, (April, (1986).

    Google Scholar 

  123. Proc. 1963 Hylleraas Symp., Revs. Mod. Phys. 35 (1963).

    Google Scholar 

  124. J.A. Coleman, Revs. Mod. Phys. 35, 668 (1963).

    Article  Google Scholar 

  125. P.O. Löwdin, Revs. Mod. Phys. 35, 496 (1963), in Quantum Theory of Atoms, Molecules, and the Solid-State (Slater Dedicatory Volume, Academic Press, 1966), p. 601.

    Article  Google Scholar 

  126. P.O. Löwdin, Rev. Mod. Phys. 97 1509 (1955); see also paper in Slater volume (see ref. 124), p. 601. For more complete references, see I. Mayer, Adv. Quantum Chem. 12, 189 (Academic Press, New York, 1980).

    Google Scholar 

  127. D.J. Thouless, The Quantum Mechanics of Many-Body Systems (Academic Press, New York, 1961); W. Adams, Phys. Rev. 127, 1650 (1962); J. Cizek and J. Paldus, J. Chem. Phys. 47, 3976 (1967); J. Paldus and J. Cizek, Prog. Theor. Phys. 42, 769 (1969); J. Chem. Phys. 52, 2919 (1970); J. Cizek and J. Paldus, J. Chem. Phys. 53, 821 (1970); J. Paldus and J. Cizek, J. Polym. Sci., Part C 29, 199 (1970); J. Paldus, J. Cizek Phys. Rev. A 2 2268 (1970); J. Paldus and J. Cizek, J. Chem. Phys. 54 (1971) J. Paldus, J. Cizek and B. A. Keating, Phys. Rev. A 8, 640 (1973); a. Laforgue, J. Cizek and J. Paldus, J. Chem. Phys. 59, 2560 (1973); W.G. Laidlaw, Int. J. Quantum Chem. 7, 87 (1973); J. Paldus and A. Veillard, Chem. Phys. Lett. 50 (1977); J. Paldus, J. Cizek, A. Laforgue, Int. J. Quantum Chem. 13, 41 (1978); J. Paldus and A. Veillard, Mol. Phys. 35, 445 (1978); M. Benard and J. Paldus, J. Chem. Phys. 72, 6546 (1980); H. Fukutome, Prog. Theor. Phys. 40, 1156 (1972); 49, 22 (1973); 50, 1433 (1973); 52, 115 (1974); 52, 1766 (1974); 53, 1320 (1975); M. Ozaki and H. Fukutome, Prog. Theor. Phys. 60, 1322 (1978); M. Ozaki, Progr. Theor. Phys. 62, 1183 (1979); M. Ozaki, Prog. Theor. Phys. 63, 84 (1980); H. Fukutome, Int. J. Quantum Chem. 20, 955 (1981); P.O. Löwdin, Proc. Ind. Acad. Sci. (Chem. Sci.) 96, 121 (1986).

    Google Scholar 

  128. E. Lieb and B. Simon, Comm. Math. Phys. 53, 185 (1977).

    Article  Google Scholar 

  129. J.C. Slater, Phys. Rev. 81, 385 (1951); see also P. O. Löwdin, Phys. Rev. 97, 1494 (1955), particularly p. 1487.

    Article  CAS  Google Scholar 

  130. R. Gaspar, Acta Phys. Acad. Sci. Hung. 3, 263 (1954); W. Kohn and L.J. Sham, Phys. Rev. 140, A1193 (1965).

    Article  Google Scholar 

  131. J.C. Slater, Adv. Quantum Chem. 6, 1 (Academic Press, New York, 1972), and the proceedings from the Sanibel Symposia, 1965–1975.

    Google Scholar 

  132. L.H. Thomas, Proc. Camb. Phil. Soc. 23, 542 (1927); E. Fermi, Z. Physik 48, 73 (1928); P.A.M. Dirac, Proc. Camb. Phil. Soc. 26, 376 (1930); P. Gombas, Die Statistische Theorie des Atoms und Ihre Anwendungen (Springer, Wein, 1949).

    Article  CAS  Google Scholar 

  133. P. Hohenberg and W. Kohn, Phys. Rev. 136, B 864 (1964).

    Article  Google Scholar 

  134. E. Clementi, IBM J. Res. Develop. 9, No. 1 (1965).

    Google Scholar 

  135. This series, known as “Studies in perturbation Theory I-XVI,” was first communicated as a series of “Technical Notes” from the Uppsala Quantum Chemistry Group and later published as follows: P.O. Löwdin, J. Mol. Spectrosc. 10, 12 (1963); 13, 326 (1964); 14, 112 (1964); 14, 119 (1964), 14, 131 (1964); J. Math. Phys. 3, 969 (1962); 3, 1171 (1962); 6, 1341 (1965); Phys. Rev. 139, A357 (1965); J. Chem. Phys. 43, S175 (1965); Int. J. Quantum Chem. 2, 867 (1968); Int. J. Quantum Chem. S4, 231 (1971); 5, 685 (1971) (together with O. Goscinski); Phys. Scrip. 21, 229 (1980); Adv. Quantum Chem. (Academic, New York 1980) 12; Int. J. Quantum Chem. 21, 69 (1982).

    Article  Google Scholar 

  136. Proc 1968 Frascati Conference on “Correlation Effects in Atoms and Molecules,” Adv. Chem. Phys. 14, (eds. I. Prigogine and S. Rice, Interscience, New York, 1969).

    Google Scholar 

  137. P.O. Löwdin, Adv. Quantum Chem. 2, 213 (1965); Revs. Mod. Phys. 35, 724 (1963); International Science and Technology (Conover-Mast Publication, New York), May, 1963; Biopolymers Symp. 1, 161 (1964); Electronic Aspects of Biochemistry, p. 167 (ed. B. Pullman, Academic Press, New York, 1964); see also, E. Pollard and M. Lenke, Mutation Research 2 214 (1965) and P.O. Löwdin, ibid, 2, 218 (1965); R. Rein and J. Ladik, J. Chem. Phys. 40, 2466 (1964); J. Ladik, Preprint QB 8, Uppsala Quantum Chemistry Group (1963); R. Rein an F. Harris, J. Chem. Phys. 41, 3393 (1964); R. Rein and F. Harris, J. Chem. Phys, 42, 2177 (1965); R. Rein and F. Harris, Jr. Chem. Phys. 43, 4415 (1965); S. Lunell and G. Sperber, Prepring QB 32, Uppsala Quantum Chemistry Group (1966), published in J. Chem. Phys. 46, 2119 (1967); P.O. Löwdin, Pont Acad. Vatican Scrip. Varia 31, “Semaine d’Etudy sur les Forces Moleculaires,” 637 (1967).

    Article  Google Scholar 

  138. E. Clementi, Proc. Natl. Acad. U.S.A. 69, 2942 (1972).

    Article  CAS  Google Scholar 

  139. P. Jordan, Z. Phys. 94, 531 (1955).

    Google Scholar 

  140. I. M. Gelfand and M.L. Zetlin, Dokl. Akad. Nauk SSSR 71, 825, 1017 (1950); I.M. Gelfand and M.L Graev, Izv. Adak. Nauk SSSR, Ser. Mat. 29, 1329 (1965) Amer. math. Soc. Transi. 64, 116 (1967).

    Google Scholar 

  141. J. Paldus and J. Cizek, Adv. Quantum Chem. 9, 105 (1975); F.A. Matsen, Adv. Quantum Chem. 11, 223 (1978); J. Paldus, J. Chem. Phys. 61, 3321 (1974); Int. J. Quantum Chem. S9, 165 (1975).

    Article  CAS  Google Scholar 

  142. I. Shavitt, Int. J. Quantum Chem. S 11, 131 (1977); S12, 5 (1978).

    Google Scholar 

  143. P. Siegbahn, J. Chem. Phys. 72, 1647 (1980); P. Saxe, D.J. Fox, H.F. Schaeffer and N.C. Handy, J. Chem. Phys. 77 5584 (1982).

    Article  CAS  Google Scholar 

  144. H.F. Schaefer III, Methods of Electronic Structure Theory, (Plenum Press, New York, 1977); P.O. Löwdin, Adv. Quantum Chem. 12, 263 (1980).

    Book  Google Scholar 

  145. E. Clementi and H.E. Popkie, J. Chem. Phys. 57, 1077 (1972), and many subsequent papers, e.g. E. Clementi and G. Corongiu, Int. J. Quantum Chem. S10, 31 (1983); G. Corongiu and J.H. Detrich, IBM J. Res. Devel. (1983); E. Clementi, G. Corongiu, J.H. Detrich S. Chin and L. Domingo; Int. J. Quantum Chem. S18, 601 (1984)

    Article  CAS  Google Scholar 

  146. J. Linderberg and Y. Öhrn, Proc. Roy. Soc. London Ser. A285, 445 (1965); Y. Öhrn and J. Linderberg, Phys. Rev. 139, A1063 (1965); J. Linderberg and Y. Öhrn, Chem. Phys. Lett. 1, 295 (1967); J. Linderberg and Y. Öhrn, Propagators in Quantum Chemistry (Academic, New York, 1973).

    Article  Google Scholar 

  147. P.O. Löwdin, Proc. 5th ICQC in Montreal, Int. J. Quantum Chem. 29 (May, 1986).

    Google Scholar 

  148. For a general review of this field, see R.J. Bartlett, Ann. Rev. Phys. Chem. 32, 359 (1981). See also two forthcoming papers in Adv. Quantum Chem. 18 (Academic Press, 1986) by M.R. Hoffmann and H.F. Schaefer III, respective S.A. Kucharski and R.J. Bartlett.

    Article  CAS  Google Scholar 

  149. P.O. Löwdin, Adv. Quantum Chem. 17, 285 (Academic Press, New York, 1985).

    Google Scholar 

  150. J. von Neumann, Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932); G. Birkhoff and J. von Neumann, Ann. of Mathematics 37, 823 (1936).

    Google Scholar 

  151. P.O. Löwdin, Int. J. Quantum Chem. 12, Suppl. 1, 197 (1978); 21, 275 (1982).

    Google Scholar 

  152. The author would like to express his gratitude of Dr. Ceferino Obcemea of the Florida Quantum Theory Project for most valuable help in collecting this bibliography.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Löwdin, P.O. (1986). Some Aspects on the History of Computational Quantum Chemistry in view of the Development of the Supercomputers and Large-Scale Parallel Computers. In: Dupuis, M. (eds) Supercomputer Simulations in Chemistry. Lecture Notes in Chemistry, vol 44. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-51060-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-51060-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-17178-2

  • Online ISBN: 978-3-642-51060-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics