Probing Air Pollutants by Differential Absorption LIDAR

  • H. J. Kölsch
  • P. Rairoux
  • J. P. Wolf
  • L. Wöste


Air pollution is related with numerous different physical, chemical and meteorological phenomena. So, the atmospheric equilibrium depends on hundreds of chemical species, but only few of them are directly emitted and considered as main pollutants. All the others are trace constituents, being nevertheless of outstanding importance for the chemical dynamics in the atmosphere. Since, e.g. smog situations do not only depend on the occurring emissions but also in a crucial way on the meteorological situation, the physical dynamics in the atmosphere are of the same importance for the description of air pollution as the chemical aspects. For those reasons, atmospheric physics, chemistry and meteorology must each contribute in an interdisciplinary manner in order to find adequate solutions for a given problem. As a consequence, the old conventional techniques of air pollution control do no longer meet our needs. Therefore, remote sensing techniques have more and more been put to use. And now, after years of scientific and technical development, some of them are ready for routine measurements [1]. Thus, complex phenomena like urban smog or acid rain can be investigated by continous monitoring on a large and 3D scale.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Weber, K.: “Fernmeßverfahren zur Bestimmung von Luftschadstoffen”, DGMKBerichte, Tagungsbericht 8901, 57–84 (1989). DGMK Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle e.V., Hamburg 1989.Google Scholar
  2. [2]
    Measures, R.M.: “Laser Remote Chemical Analysis”, John Wiley & Sons, New York, 1988, pp. 308–318.Google Scholar
  3. [3]
    Wolf, J.P., Wöste L.: “Détection séléctive et à distance de la pollution par lidar”, Hely. Phys. Acta, 60, 161–170 (1987).Google Scholar
  4. [4]
    Wolf, J.P.: “Applications de la spectroscopie laser à la pollution atmosphérique”, Ecole Polytechnique Fédérale de Lausanne, Thesis N4 685 (1987).Google Scholar
  5. [5]
    Kölsch, H.J., P. Rairoux, J.P. Wolf and L. Wöste: “Simultaneous NO and NO2 DIAL Measurements using BBO Crystals”, Appl. Optics, 28, 2052–2056 (1989).CrossRefGoogle Scholar
  6. [6]
    Beniston, M., J.P. Wolf, M. Beniston-Rebetez, H.J. Kölsch, P. Rairoux, and L. Wöste: “Use of Lidar Measurements and Numerical Models in Air Pollution Research”, J. Geophys. Research, 95, 9879–9894 (1990).CrossRefGoogle Scholar
  7. [7]
    Kölsch, H.J., P. Lambelet, H.G. Limberger, P. Rairoux, S. Recknagel, J.-P. Wolf and L. Wöste: “LIDAR - Pollution Monitoring of the Atmosphere”, in: W. Waidelich: Laser/Optoelektronik in der Technik, Springer, Berlin, Heidelberg (1990).Google Scholar
  8. [8]
    Wolf J.P., H.J. Kölsch, P. Rairoux, and L. Wöste (1990) Remote Detection of Atmospheric Pollutants using Differential Absorption LIDAR Techniques, in: W. Demtröder and M. Inguscio: “Applied Laser Spectroscopy”,NATO ASI Series, Series B: Physics, Vol. 241, Plenum Press, New York and London, 1990, pp. 435–467.Google Scholar
  9. [9]
    Kölsch H.J.: “Probing the Atmosphere: Air Pollution Studies by LIDAR”, doctoral thesis, Freie Universität Berlin, 1990.Google Scholar
  10. [10]
    Rairoux, P.: “Mesures par lidar de la pollution atmosphérique et des paramètres météorologiques”, Ecole Polytechnique Fédérale de Lausanne, dissertation 1991.Google Scholar
  11. [11]
    Flesia, C., H.J. Kölsch, P. Rairoux, J.P. Wolf and L. Wöste: “Remote Measurement of the Aerosols Size Distribution by LIDAR”, J. Aerosol Sci., 20, 1213–1216 (1989).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • H. J. Kölsch
    • 1
  • P. Rairoux
    • 1
  • J. P. Wolf
    • 1
  • L. Wöste
    • 1
  1. 1.Institut für Experimentalphysik, MolekülphysikFreie Universität BerlinBerlin 33Germany

Personalised recommendations