Skip to main content

Hierarchical Clustering of Sampled Functions

  • Conference paper
Information and Classification

Part of the book series: Studies in Classification, Data Analysis and Knowledge Organization ((STUDIES CLASS))

  • 525 Accesses

Abstract

This paper addresses the problem of performing a hierarchical cluster analysis on objects that are measured on the same variable on a number of equally spaced points. Such data are typically collected in longitudinal studies or in experiments where electro-physiological measurements are registered (such as EEG or EMG). A generalized inter-object distance measure is defined that takes into account various aspects of the similarity between the functions from which the data are sampled. A mathematical programming procedure is developed for weighting these aspects in such a way that the resulting inter-object distances optimally satisfy the ultrametric inequality. These optimally weighted distances can then be subjected to any existing hierarchical clustering procedure. The new approach is illustrated on an artificial data set and some possible limitations and extensions of the new method are discussed.

Supported as “Bevoegdverklaard Navorser” of the Belgian “Nationaal Fonds voor Wetenschappelijk Onderzoek”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Besse, P., and Ramsay, J.O. (1986), Principal Component Analysis of Sampled Functions, Psychometrika, 51, 285–311.

    Article  Google Scholar 

  • De Soete, G. (1984a), A Least Squares Algorithm for Fitting an Ultrametric Tree to a Dissimilarity Matrix, Pattern Recognition Letters, 2, 133–137.

    Article  Google Scholar 

  • De Soete, G. (1984b), Computer Programs for Fitting Ultrametric and Additive Trees to Proximity Data by Least Squares Methods, Behavior Research Methods, Instruments, & Computers, 16, 551–552.

    Article  Google Scholar 

  • De Soete, G. (1986), Optimal Variable Weighting for Ultrametric and Additive Tree Clustering, Quality & Quantity, 20, 169–180.

    Article  Google Scholar 

  • De Soete, G., and Carroll, J.D. (1988), Optimal Weighting for One-Mode and Two-Mode Ultrametric Tree Representations of Three-Way Three-Mode Data, in M. G.H. Jansen and W.H. van Schuur (eds.), The Many Faces of Multivariate Data Analysis, Rion, Groningen, 16–29.

    Google Scholar 

  • De Soete, G., and Carroll, J.D. (1989), Ultrametric Tree Representations of Three-Way Three-Mode Data, in: R. Coppi and S. Bolasco (eds.), Multiway Data Analysis, North-Holland, Amsterdam, 415–426.

    Google Scholar 

  • De Soete. G., Carroll, J.D., and Desarbo, W.S. (1986), Alternating Least Squares Optimal Variable Weighting Algorithms for Ultrametric and Additive Tree Representations, in: W. Gaul and M. Schader (eds.), Classification as a Tool of Research, North-Holland, Amsterdam, 97–103.

    Google Scholar 

  • De Soete, G., Desarbo, W.S., and Carroll, J.D. (1985), Optimal Variable Weighting for Hierarchical Clustering: An Alternating Least-Squares Algorithm, Journal of Classification, 2, 173–192.

    Article  Google Scholar 

  • De Soete, G., Desarbo, W.S., Furnas, G.W., and Carroll, J.D. (1984), The Estimation of Ultrametric and Path Length Trees from Rectangular Proximity Data, Psychometrika, 49, 289–310.

    Article  Google Scholar 

  • Dobson, A.J. (1974), Unrooted Trees for Numerical Taxonomy, Journal of Applied Probability, 11, 32–42.

    Article  Google Scholar 

  • Gill, P.E., Murray, W., and Wright, M.H. (1981), Practical Optimization, Academic Press, London.

    Google Scholar 

  • Johnson, S.C. (1967), Hierarchical Clustering Schemes, Psychometrika, 32, 241–254.

    Article  Google Scholar 

  • Milligan, G.W. (1989), A Validation Study of a Variable Weighting Algorithm for Cluster Analysis, Journal of Classification, 6, 53–71.

    Article  Google Scholar 

  • Powell, M.J.D. (1977), Restart Procedures for the Conjugate Gradient Method, Mathematical Programming, 12, 241–254.

    Article  Google Scholar 

  • Ramsay, J.O. (1982), When the Data Are Functions, Psychometrika, 47, 379–396.

    Article  Google Scholar 

  • Sattath, S., and Tversky, A. (1977), Additive Similarity Trees, Psychometrika,42, 319–345.

    Article  Google Scholar 

  • Winsberg, S., and Kruskal, J. (1986), Easy to Generate Metrics for Use with Sampled Functions, in: F. De Antoni, N. Lauro and A. Rizzi (eds.), Compstat 1986, Physica-Verlag, Heidelberg, 55–60.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

De Soete, G. (1993). Hierarchical Clustering of Sampled Functions. In: Opitz, O., Lausen, B., Klar, R. (eds) Information and Classification. Studies in Classification, Data Analysis and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-50974-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-50974-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56736-3

  • Online ISBN: 978-3-642-50974-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics