Advertisement

The Standard Model

  • Andrzej Derdzinski
Part of the Texts and Monographs in Physics book series (TMP)

Abstract

The material covered in this chapter occupies a central position in the classical the theory of particles and interactions. It includes geometric descriptions of the electromagnetic, electroweak and strong (interquark) interactions, based on the unifying Yang-Mills approach outlined in Chapter 5.

Keywords

Vector Bundle Quark Model Grand Unify Theory Spontaneous Symmetry Breaking Particle Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Leite Lopes, J. (1981): Gauge Field Theories (Pergamon Press, Oxford)Google Scholar
  2. Felsager, B. (1983): Geometry, Particles and Fields (Odense Univ. Press, Odense)Google Scholar
  3. Ryder, L.H. (1986): Elementary Particles and Symmetries, Documents on Modern Physics (Gordon and Breach, New York)Google Scholar
  4. Leite Lopes, J. (1981): Gauge Field Theories (Pergamon Press, Oxford)Google Scholar
  5. Huang, K. (1982): Quarks, Leptons and Gauge Fields (World Scientific, Singapore)Google Scholar
  6. Sudbery, A. (1986): Quantum Mechanics and the Particles of Nature: An Outline for Mathematicians (Cambridge University Press, Cambridge)zbMATHGoogle Scholar
  7. Lawson, H.B., Michelsohn, M.-L. (1989): Spin Geometry, Princeton Math. Series, Vol. 38 (Princeton Univ. Press, Princeton)Google Scholar
  8. Penrose R., Rindler, W. (1984–1986): Spinors and Space-Time I, II (Cambridge Univ. Press, Cambridge)CrossRefGoogle Scholar
  9. Derdzinski, A. (1991b): Notes on Particle Physics (Ohio State Math. Research Institute preprints)Google Scholar
  10. Lawson, H.B., Michelsohn, M.-L. (1989): Spin Geometry, Princeton Math. Series, Vol. 38 (Princeton Univ. Press, Princeton)Google Scholar
  11. Penrose R., Rindler, W. (1984–1986): Spinors and Space-Time I, II (Cambridge Univ. Press, Cambridge)CrossRefGoogle Scholar
  12. Derdzinski, A. (1991b): Notes on Particle Physics (Ohio State Math. Research Institute preprints)Google Scholar
  13. Ryder, L.H. (1986): Elementary Particles and Symmetries, Documents on Modern Physics (Gordon and Breach, New York)Google Scholar
  14. Leite Lopes, J. (1981): Gauge Field Theories (Pergamon Press, Oxford)Google Scholar
  15. Huang, K. (1982): Quarks, Leptons and Gauge Fields (World Scientific, Singapore)Google Scholar
  16. Sudbery, A. (1986): Quantum Mechanics and the Particles of Nature: An Outline for Mathematicians (Cambridge University Press, Cambridge)zbMATHGoogle Scholar
  17. Ryder, L.H. (1986): Elementary Particles and Symmetries, Documents on Modern Physics (Gordon and Breach, New York)Google Scholar
  18. Leite Lopes, J. (1981): Gauge Field Theories (Pergamon Press, Oxford)Google Scholar
  19. Huang, K. (1982): Quarks, Leptons and Gauge Fields (World Scientific, Singapore)Google Scholar
  20. Sudbery, A. (1986): Quantum Mechanics and the Particles of Nature: An Outline for Mathematicians (Cambridge University Press, Cambridge)zbMATHGoogle Scholar
  21. Ryder, L.H. (1986): Elementary Particles and Symmetries, Documents on Modern Physics (Gordon and Breach, New York)Google Scholar
  22. Bogolyubov, N.N. [Bogolubov, N.N.], Logunov, A.A., Oksak A.I., Todorov, I.T. (1990): General Principles of Quantum Field Theory, Mathematical Physics and Applied Mathematics, Vol. 10 (Kluwer, Dordrecht)Google Scholar
  23. Felsager, B. (1983): Geometry, Particles and Fields (Odense Univ. Press, Odense)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Andrzej Derdzinski
    • 1
  1. 1.Dept. of MathematicsOhio State UniversityColumbusUSA

Personalised recommendations