Skip to main content
  • 225 Accesses

Abstract

This chapter ist widely based on refs. /5.1/ and /2.1/. Compared to the methods for determining the force and work requirements, the evaluation of the limits of metal forming processes has not yet been studied thoroughly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

a:

initial height of specimen in Fig. 5.10

b0 :

initial width of specimen in Fig. 5.10

b:

initial width of specimen in Fig. 5.10

b1 :

width of specimen after test (Fig. 5.10)

β:

deep-drawing ratio

ϑ:

azimut angle (cylindrical upset specimen)

εN :

relative elongation at fracture of notched tensile test piece (notched tensile elongation)

η:

stress ratio in the drawing test, see Eq. (5.2)

Fcr :

force required for causing bottom cracks in the Engelhardt test

Fdmax :

maximum drawing force in deep-drawing

φ1 :

natural strain in longitudinal direction in the tensile test on sheet specimens or the drawing test, see Fig. 5.6

φ2 :

natural strain in transverse direction in the tensile test on sheet specimens or the drawing test, see Fig. 5.6

φ̄B :

equivalent strain to fracture

φ̄L :

forming limit

K̄:

springback ratio

l:

reference length in Fig. 5.10

l1 :

length of specimen after test (Fig. 5.10)

ρ:

notch radius

r1 :

bending radius

σ1 :

stress in longitudinal direction in the drawing test, see Eq. (5.2)

σ2 :

stress in transverse direction in the drawing test, see Eq. (5.2)

t:

notch depth of notched tensile specimen (sheet metal), see Fig. 5.3

T:

characteristic value in the Engelhardt test

z:

axial coordinate (cylindrical upset specimen)

References

  1. Frobin, R.: Process and Material Related Limiting Conditions in Forming Operations (in German), Fertig.-tech. u. Betr. 33 (1983), pp. 11–14.

    Google Scholar 

  2. Jahnke, H. et al.: Metal Forming and Cutting (in German), 2nd Ed., Berlin, Verlag Technik, 1972.

    Google Scholar 

  3. Frobin, R.: Forming Capacity of Metallic Materials as a Function of the Type of Stress Condition (in German), Neue Hütte 31 (1986), pp. 201–205.

    Google Scholar 

  4. Dieter, G.E.: Bulk Workability Testing, in: (Ed.) Newby, R.: Metals Handbook, Vol. 8, Mechanical Testing, 9th Ed., Metals Park, Ohio, ASM, 1985.

    Google Scholar 

  5. Schaub, W.: Investigations into the Failure of Sheet Metals When Square-Edged 180°-Bending (in German), Bänder Bleche Rohre 20 (1979), pp. 458–461.

    Google Scholar 

  6. Spretnak, J.W.: Forgeability, Inst. for Forging Die Design, Forging Industry Assoc, Cleveland/Ohio, 1980.

    Google Scholar 

  7. Kubinski, W. et al.: Forming Limit When Piercing in Scewed Rolling Mill (in German), Bänder Bleche Rohre 27 (1986), pp. 6–8.

    Google Scholar 

  8. ASTM E 558–83: Standard Test Method for Torsion Testing of Wire, 1983.

    Google Scholar 

  9. Beelich, K.H.: Formulas and Charts for Materials Tests (in German), Darmstadt, Fikentscher 1976.

    Google Scholar 

  10. Yamaguchi, T.; Taniguchi, H.: Studies on Formability of Hot Rolled Steel Sheets (in Japanese), Nippon Kokan Tech. Rep. 45 (1969), pp. 23–30.

    Google Scholar 

  11. Tenmyo, G. et al.: NKHF-High Strength Steels for Cold Forming, Nippon Kokan Tech. Rep. Overseas 11 (1979), pp. 29–37.

    Google Scholar 

  12. Hamilton, R.T.; Gordon Parr, J.: An Evaluation of Carbon Steel Sheet by Notch Tension and r and n Data, Sheet Met. Ind. 47 (1979), pp. 621–624

    Google Scholar 

  13. Hamilton, R.T.; Gordon Parr, J.: An Evaluation of Carbon Steel Sheet by Notch Tension and r and n Data, Sheet Met. Ind. 47 (1979), 641.

    Google Scholar 

  14. Brozzo, P.; De Luca, B.: On the Interpretation of the Formability Limits of Metal Sheets and Their Evaluation by Means of Elementary Tests, Trans. Iron Steel Inst. Jpn. 11 (1971), Suppl. II (Proc. Int. Conf. Sci. Tech. Iron Steel, Tokyo 1970), pp. 966–968.

    Google Scholar 

  15. Meyer, L. et al.: Metallurgical and Technological Fundamentals for Developing and Producing Low Pearlite Structural Steels (in German), Thyssen Forsch. 3 (1971), pp. 8–43.

    CAS  Google Scholar 

  16. Gonda, H. et al.: NKHF Series High Strength Steels for Cold Forming, Nippon Kokan Tech. Rep. Overseas 16 (1973), pp. 9–23.

    Google Scholar 

  17. Matsudo, K. et al.: Relation Between Press-Formability and Notched Tensile Elongation of Steel Sheets, Nippon Kokan Tech. Rep. Overseas 18 (1974), pp. 1–14.

    Google Scholar 

  18. Matsudo, K. et al.: Prediction of Punched Surface Stretch Flangeability of Steel Sheets, in: Sheet Metal Forming and Formability, Proc. 10th Biennual Congr. IDDRG, Warwick/GB, 18.–20.4.1978, pp. 325–344.

    Google Scholar 

  19. Sonne, H.M. et al.: Notched Tensile Test and Stretch Bending Test -Test Methods for Determining the Cold Formability of Hot and Cold-Rolled Flat Products (in German), Arch. Eisenhüttenwes. 50 (1979), pp. 503–508.

    CAS  Google Scholar 

  20. Takahashi, M. et al.: Development of Formable Ultra High Strength Cold Rolled Steel Sheet, Proc. 12th Biennual Congr. IDDRG, St. Margherita Ligure, Italy, 1982, Pt. 1, pp. 131–140.

    Google Scholar 

  21. Straßburger, C. et al.: The Fine-Blankability of Hot Strips Made of High Strength Micro-Alloyed and Sulfide-Controlled Fine Grain Structural Steel (in German), Thyssen Tech. Ber. 14 (1982), pp. 146–153.

    Google Scholar 

  22. Weist, C.: The Notched Tensile Test for Evaluating the Anisotropic Forming Limit of Sheet Metals (in German), Berichte aus dem Institut für Umformtechnik, Universität Stuttgart No. 92, Berlin, Springer 1987.

    Google Scholar 

  23. Weist, C.: Notched Tensile Test and Anisotropic Formability of Sheet Metal (in German), Blech Rohre Profile 32 (1985), pp. 137–142.

    Google Scholar 

  24. Wagoner, R.H.; Wang, N.-M.: An Experimental and Analytical Investigation of In-Plane Deformation of 2036-T4 Aluminum Sheet, Int. J. Mech. Sci. 21 (1979), pp. 255–264.

    Article  Google Scholar 

  25. Kuhn, H. et al.: A Fracture Criterion for Cold Forming, Trans. ASME, J. Eng. Mater. Technol. 95 (1973), pp. 213–216.

    Article  Google Scholar 

  26. Sowerby, R. et al.: Materials Testing for Cold Forging, Trans. ASME, J. Eng. Mater. Technol. 106 (1984), pp. 101–106.

    Article  Google Scholar 

  27. Erman, E. et al.: Novel Test Specimen for Workability Testing, in: Compression Testing of Homogeneous Materials and Composites, Symp. Williamsburg, VA., 10.–11.3.1982, PA.: ASTM 1983, pp. 279–290.

    Chapter  Google Scholar 

  28. Ziaja, G. et al.: Simulation and Limit State in Metal Forming, in: (Ed.) Lange, K.: Advanced Technology of Plasticity, 1987, Proc. 2nd ICTP, Stuttgart, 24.–28.8.1987, Vol. 2, Berlin, Springer 1987, pp. 999–1004.

    Google Scholar 

  29. Lange, K. et al.: Material Characteristic Values as Criteria for Limits of Sheet Forming (in German), Materialprüf. 25 (1983), pp. 113–116.

    Google Scholar 

  30. Ferron, G.; Mliha-Touati, M.: Determination of the Forming Limits in Planar-Isotropic and Temperature-Sensitive Sheet Metals, Int. J. Mech. Sci. 27 (1985), pp. 121–124.

    Article  Google Scholar 

  31. Hasek, V.: Forming Analysis Using the Grid Pattern Method (in German), in: (Ed.) Lange, K.: Metalforming — Handbook for Industry and Science, Vol. 3, Sheet Metal Forming, 2nd Ed., Berlin, Springer (to be published).

    Google Scholar 

  32. Veerman, C.C.: Determination of Appearing and Admissible Strains in Cold-Reduced Sheets, Sheet Metal Ind. 48 (1971), pp. 678–680.

    Google Scholar 

  33. Hasek, V.: Application of Forming Limit Diagrams (in German), Ind.-Anz. 99 (1977), pp. 343–347.

    Google Scholar 

  34. Blaich, M.: Report on Drawing of Sheet Components of Aluminum Alloys (in German), Berichte aus dem Institut für Umformtechnik, No. 61, Berlin, Springer 1981.

    Google Scholar 

  35. Rasmussen, S.N.: Influence of Forming History on the Forming Limit Diagram (in German), in: Seminar “Neuere Entwicklungen in der Blechbear-beitung”, Stuttgart, 19.–20.6.1984, Forschungsgesellschaft Umformtechnik mbH., Stuttgart 1984.

    Google Scholar 

  36. Dannenmann, E.; Blaich, M.: Method for Testing Cold Upsettability (in German), Draht 28 (1978), pp. 702–706.

    Google Scholar 

  37. Tozawa, Y.: Recommended Method in Japan for Testing Cold Upsettability, 12th 1CFG Plenary Meeting, Stuttgart, 5.–6.9.1979.

    Google Scholar 

  38. Lehmann, H.: Materials Testing, Vol. 1 Metals (in German), München/Wien, Oldenbourg 1968.

    Google Scholar 

  39. (Ed.) Bundesverband Deutscher Stahlhandel: BDS-Fachbuch 10, Wire (in German), 2nd Ed., Bochum, Bundesverband Deutscher Stahlhandel 1972.

    Google Scholar 

  40. Schelosky, H.: Methods for Testing Formability of Sheet Metals (in German), in: (Ed.) Lange, K.: Handbook of Metal Forming, Vol. 3, Sheet Metal Forming (in German), Berlin, Springer 1975.

    Google Scholar 

  41. Hasek, V.: Technological Testing Methods (in German), in: (Ed.) Lange, K.: Metalforming — Handbook for Industry and Science, Vol. 3 Sheet Metal Forming, 2nd Ed., Berlin, Springer (to be published).

    Google Scholar 

  42. ASTM E 643–84: Standard Test Method for Ball Punch Deformation of Metallic Sheet Material, 1984.

    Google Scholar 

  43. Adler, G.; Noack, P.: Process and Possibilities to Estimate Deep-Drawability of Sheets (in German), Ind.-Anz. 87 (1965), pp. 2002–2009.

    Google Scholar 

  44. Ebertshäuser, H.: Technology of Sheet Metal Working (in German), Düsseldorf, Triltsch 1967.

    Google Scholar 

  45. Wilhelm, H.: Tensile-Compressive Forming of Sheet Metals (in German), in: (Ed.) Lange, K.: Handbook of Metal Forming, Vol. 3 Sheet Metal Forming, Berlin, Springer 1975.

    Google Scholar 

  46. Oehler, G.: The Hole Expansion Test (in German), Blech Rohre Profile 34 (1987), p. 281.

    Google Scholar 

  47. Ziegler, W.: The Cup-Drawing Test According to Swift (in German), Ind.-Anz. 91 (1969), pp. 2250–2252.

    Google Scholar 

  48. ISO 8490–1986: Metallic Materials — Sheet and Strip — Modified Erichsen Cupping Test, 1986.

    Google Scholar 

  49. DIN 50155: Zipfelprüfung durch Näpfchenziehversuch für Bleche, Bänder oder Streifen aus Nichteisenmetallen mit einer Dicke von 0,3 bis 3 mm (Earing Test Using Cup Drawing Test for Sheets or Strips Made of Non-Ferrous Metals with a Thickness of 0.3 to 3 mm), November 1981.

    Google Scholar 

  50. Krisch, A.: The Conical Deep Drawing Test According to S. Fukui (in German), Stahl und Eisen 83 (1963), pp. 1128–1130.

    Google Scholar 

  51. Küppers, W.; Schmitz, K.: Determining the Limiting Drawing Ratio Using Drawing Force and Rupture Force for Stainless Sheets (in German), Blech Rohre Profile 18 (1971), pp. 356–359.

    Google Scholar 

  52. Brückner, L.; Pöhlandt, K.: New Method of Determining the Reduction+++ of Area in Tensile Tests on Sheet Metal (in German), Materialprüf. 30 (1988), pp. 49–51.

    Google Scholar 

  53. ASTM E 290–81: Standard Method for Semi-Guided Bend Test for Ductility of Metallic Materials, 1981.

    Google Scholar 

  54. Mandigo, F.N.: Bending Ductility Tests, in: (Ed.) Newby, R.: Metals Handbook, Vol. 8, 9th Ed., Metals Park, Ohio, ASM 1985.

    Google Scholar 

  55. ISO 7799–1985: Metallic Materials — Sheet and Strip 3 mm Thick and Less — Reverse Bend Test, October 1985.

    Google Scholar 

  56. Engelhardt, W.: Development and First Evaluation of a New Method of Evaluating Deep Drawability (in German), Thesis, TU Dresden 1961.

    Google Scholar 

Further Reading

  • ISO 7438–1985: Metallic Materials — Bend Test, 1985.

    Google Scholar 

  • Euronorm 6–55: Fold Test on Steel, 1955.

    Google Scholar 

  • Euronorm 12–55: Fold Test on Steel Sheet and Strip Less than 3 mm Thick, 1955.

    Google Scholar 

  • Keeler, S.P.: Understanding Sheet-Metal Formability, Sheet Met. Ind. 48 (1971), pp. 357–361

    Google Scholar 

  • Keeler, S.P.: Understanding Sheet-Metal Formability, Sheet Met. Ind. 364 (1971), pp.440–442

    Google Scholar 

  • Keeler, S.P.: Understanding Sheet-Metal Formability, Sheet Met. Ind. 364 (1971), pp. 447–449

    Google Scholar 

  • Keeler, S.P.: Understanding Sheet-Metal Formability, Sheet Met. Ind. 364 (1971), pp. 511–517

    Google Scholar 

  • Keeler, S.P.: Understanding Sheet-Metal Formability, Sheet Met. Ind. 364 (1971), pp. 589–593

    Google Scholar 

  • Keeler, S.P.: Understanding Sheet-Metal Formability, Sheet Met. Ind. 364 (1971), pp. 618

    Google Scholar 

  • Keeler, S.P.: Understanding Sheet-Metal Formability, Sheet Met. Ind. 364 (1971), pp. 687–691

    Google Scholar 

  • Keeler, S.P.: Understanding Sheet-Metal Formability, Sheet Met. Ind. 364 (1971), pp. 699

    Google Scholar 

  • Keeler, S.P.: Understanding Sheet-Metal Formability, Sheet Met. Ind. 364 (1971), pp. 739

    Google Scholar 

  • Keeler, S.P.: Understanding Sheet-Metal Formability, Sheet Met. Ind. 364 (1971), pp. 742–745

    Google Scholar 

  • Makazima, K. et al.: Study of the Formability of Steel Sheets, Yawata Tech. Rep. No. 284 (1968), pp. 140–141.

    Google Scholar 

  • Misiolek, W.; Zasaszinski, J.: Extrudability Testing of Aluminum Alloys of Different Formability, Arch. Metall. 32 (1987), pp. 439–451.

    Google Scholar 

  • Wright, R.N. et al.: Modelling Bulk Workability Under Complex Conditions, J. Metals 39 (1987), pp. 26–29.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pöhlandt, K. (1989). Determining the Limits of Formability. In: Materials Testing for the Metal Forming Industry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-50241-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-50241-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-50243-9

  • Online ISBN: 978-3-642-50241-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics