Skip to main content

Theory for Pulsed and Rapid Scan Ion Cyclotron Resonance Signals

  • Chapter
Ion Cyclotron Resonance Spectrometry II

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 31))

Abstract

Several recent developments have stimulated renewed interest in use of the cyclotron resonance principle for high performance mass spectrometry. A number of laboratories have constructed Fourier transform mass spectrometers (FT-MS) which are capable of ultrahigh mass resolution and rapid scanning [1–4]. These instruments function by storing ions in a one region ion cyclotron resonance (ICR) cell and detecting them by exciting their cyclotron motion in a homogeneous magnetic field [5,6]. The cyclotron resonance principle has also been used in conjunction with ion trapping techniques to study the energetics and dynamics of gaseous ion-molecule reactions [7–10] and to study laser photodetachment and laser photodissoci-ation of ions [11–13]. The most advanced new instruments utilize high-field superconducting magnets to store the ions efficiently in the analyzer cell for long periods of time (up to several minutes).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.B. Comisarow and A.G. Marshall, Chem. Phys. Lett., 25 (1974) 282,

    Article  CAS  Google Scholar 

  2. M.B. Comisarow in “Transform Techniques in Chemistry”, (P. Griffiths, Ed.), Plenum Press, New York, 1978, p. 257

    Google Scholar 

  3. R.L. Hunter and R.T. Mclver, Jr., Chem. Phys. Lett., 49 (1977) 577;

    Google Scholar 

  4. R.L. Hunter and R.T. Mclver, Jr., Am. Lab. 9 (1977) 13.

    CAS  Google Scholar 

  5. E.B. Ledford, Jr., S. Ghaderi, R.L. White, R.B. Spencer, P.S. Kulkarni, C.L. Wilkins, and M.L. Gross, Anal. Chem., 52 (1980) 463.

    Article  CAS  Google Scholar 

  6. G. Parisod and T. Gaumann, Chimica, 34 (1980) 271.

    CAS  Google Scholar 

  7. R.T. Mclver, Jr., E.B. Ledford, Jr. and R.L. Hunter, J. Chem. Phys., 72 (1980) 2535.

    Article  Google Scholar 

  8. M.B. Comisarow and A.G. Marshall, J. Chem. Phys. 64 (1976) 110;

    Google Scholar 

  9. A.G. Marshall, M.B. Comisarow and G. Parisod, J. Chem. Phys., 71 (1979) 4434.

    Article  CAS  Google Scholar 

  10. J.E. Bartmess and R.T. McIver, Jr. in “Gas Phase Ion Chemistry,” Vol. 2 (M.T. Bowers, Ed.) Academic Press, New York, 1979, pp 88–119.

    Google Scholar 

  11. J.E. Bartmess, J.A. Scott and R.T. Mclver, Jr., J. Am. Chem. Soc, 101 (1979) 6046.

    Article  CAS  Google Scholar 

  12. R.T. Mclver, Jr., Rev. Sci. Instrum., 49 (1978) 111.

    Article  Google Scholar 

  13. J.F. Wolf, R.H. Staley, I. Kopple, M. Taagepera, R.T. Mclver, Jr., J. L. Beauchamp and R.W. Taft, J. Am. Chem. Soc., 99 (1977) 5417.

    Article  CAS  Google Scholar 

  14. B.K. Janousek and J.I. Brauman in “Gas Phase Ion Chemistry”, Vol. 2, (M.T. Bowers, Ed.) Academic Press, New York, 1979, pp. 53–83.

    Google Scholar 

  15. R.C. Dunbar in “Kinetics of Ion-Molecule Reactions”, (P. Ausloos, Ed.) Plenum Press, New York, 1979, pp 53–83.

    Google Scholar 

  16. R.L. Woodin, D.S. Bomse and J.L. Beauchamp, J. Am. Chem. Soc, 100 (1978 3248.

    Article  CAS  Google Scholar 

  17. J.A. Hippie, H. Sommer and H.A. Thomas, Phys. Rev., 76 (1949) 1877;

    Google Scholar 

  18. H. Sommer, H.A. Thomas and J.A. Hippie, Phys. Rev., 82 (1951) 697;

    Article  CAS  Google Scholar 

  19. R.T. Mclver, Jr., E.B. Ledford, Jr., and J.S. Miller, Anal. Chem., 47 (1975) 692.

    Article  Google Scholar 

  20. D. Wobschall, Rev. Sci. Instrum., 36 (1965) 466.

    Article  CAS  Google Scholar 

  21. H. Sommer and H.A. Hippie, Phys. Rev., 78 (1950) 806.

    Article  CAS  Google Scholar 

  22. R.T. Mclver, Jr., Rev. Sci. Instrum., 44 (1973) 1071;

    Article  Google Scholar 

  23. R.T. Mclver, Jr. and A.D. Baranyi, Int. J. Mass Spectrom. Ion Phys., 14 (1974) 449.

    Article  Google Scholar 

  24. A. Warnick, L.R. Anders, T.E. Sharp, Rev. Sci. Instrum., 45 (1974) 929.

    Article  Google Scholar 

  25. C. Amano, Y. Goto and M. Inoue, Int. J. Mass Spectrom. Ion Phys., 32 (1979) 67.

    Article  CAS  Google Scholar 

  26. O.R.T. Mclver, Jr., R.L. Hunter, E.B. Ledford, Jr., M.L. Locke and T.J. Francl, Int. J. Mass Spectrom. Ion Phys., 39 (1981) 65.

    Article  Google Scholar 

  27. L.R. Anders, J.L. Beauchamp, R.C. Dunbar and J. Baldeschwieler, J. Chem. Phys., 45 (1966) 1062.

    Google Scholar 

  28. R.T. Mclver, Jr. and R.C. Dunbar, Int. J. Mass Spectrom. Ion Phys., 7 (1971) 471.

    Article  Google Scholar 

  29. D.J. DeFrees, W.J. Hehre, R.T. Mclver, Jr. and D.H. McDaniel, J. Phys. Chem., 83 (1979) 232.

    Article  CAS  Google Scholar 

  30. W. Shockley, J. Appl. Phys., 9 (1938) 635;

    Article  Google Scholar 

  31. M.D. Skirkis and N. Holonyah, Jr., Am. J. Phys., 34 (1966) 943.

    Article  Google Scholar 

  32. M.B. Comisarow, J. Chem. Phys., 69 (1978) 4097.

    Article  CAS  Google Scholar 

  33. Motion of ions in a one-region trapped ICR cell has been discussed by T.E. Sharp, J.R. Eyler and E. Li, Int. J. Mass Spectrom. Ion Phys., 9 (1972) 421.

    Google Scholar 

  34. J.A. Zonneveld, “Automatic Numerical Integration”, Mathematisch Centrum Amsterdam, 1964

    Google Scholar 

  35. We estimate that the ionization efficiency for benzene at 20 eV is 20.5 positive ions per electron per cm per torr of pressure. This estimate was derived from the absolute value of 6.4 ions per electron per cm per torr for C2H2 (J.T. Tate and P.T. Smith, Phys. Rev., 39 (1932) 270) and the value of 3.2 for the relative ionization efficiency of C6H6 relative to C2H2 (

    Article  CAS  Google Scholar 

  36. J.W. Otvos and D.P. Stevenson, J. Am. Chem. Soc, 78 (1956) 546.

    Article  CAS  Google Scholar 

  37. R.L. Hunter and R.T. Mclver, Jr., Anal. Chem., 51 (1979) 699.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hunter, R.L., McIver, R.T. (1982). Theory for Pulsed and Rapid Scan Ion Cyclotron Resonance Signals. In: Ion Cyclotron Resonance Spectrometry II. Lecture Notes in Chemistry, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-50207-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-50207-1_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11957-9

  • Online ISBN: 978-3-642-50207-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics