Skip to main content

Lps Gene-Associated Functions

  • Conference paper
Genetics of Immunological Diseases

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 137))

Abstract

As a result of a spontaneous mutation estimated to have occurred between 1960 and 1965, the C3H/HeJ mouse strain now exhibits a profound state of hyporesponsiveness to endotoxin, the ubiquitous lipopolysaccharide (LPS) cell wall component of Gram negative bacteria. The failure of C3H/HeJ mice to respond to LPS in vivo is reflected by the failure of a variety of cell types derived from these mice (i.e., B cells, T cells, macrophages, and fibroblasts) to respond to LPS in vitro (reviewed in Rosenstreich 1985). Based on genetic analyses using the C3H/HeJ mouse in crosses with other fully LPS-responsive strains, it is now recognized that the capacity to respond to LPS is controlled by a single, autosomal gene, Lps, for which a normal allele (Lps n) and a defective allele (Lps d) have been defined (reviewed in Rosenstreich 1985). The in vivo or in vitro responses to LPS exhibited by F1 progeny of Lps n/Lps n X Lps d/Lps d crosses have been found to be intermediate, indicating that the Lps gene is codominantly expressed (Sultzer 1972; Glode and Rosenstreich 1976; Watson et al. 1977b; Rosenstreich et al. 1978; McGhee et al. 1979).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Coutinho A, Forni L, Melchers F, Watanabe T (1977) Genetic defect in responsiveness to the B cell mitogen lipopolysaccharide. Eur J Immunol 7:325–328

    Article  PubMed  CAS  Google Scholar 

  • Coutinho A, Meo T (1978) Genetic basis for unresponsiveness to lipopolysaccharide in C57BL/10Cr mice. Immunogenetics 7: 17–24

    Article  PubMed  CAS  Google Scholar 

  • DeMaeyer E, Dandoy F (1987) Linkage analysis of the murine interferon alpha locus (Ifa) on chromosome 4. J Hered 78:204–209

    Google Scholar 

  • Fertsch D, Vogel SN (1984) Recombinant interferons increase macrophage Fc receptor capacity. J Immunol 132:2436–2439

    PubMed  CAS  Google Scholar 

  • Forni L, Coutinho A (1978) An antiserum which recognizes lipopolysacchride reactive B cells in the mouse. Eur J Immunol 8:56–62

    Article  PubMed  CAS  Google Scholar 

  • Gessani S, Belardelli F, Borghi P, Boraschi D, Gresser I (1987) Correlation between the lipopolysaccharide response of mice and the capacity of mouse peritoneal cells to transfer an antiviral state. J Immunol 139:1991–1998

    PubMed  CAS  Google Scholar 

  • Glode LM, Rosenstreich DL (1976) Genetic control of B cell activation by bacterial lipopolysaccharide is mediated by multiple distinct genes or alleles. J Immunol 117:2061–2066

    PubMed  CAS  Google Scholar 

  • Gresser I, Vignaux F, Belardelli F, Tovey MG, Maunoury M-T (1985) Injection of mice with antibody to mouse interferon alpha-beta decreases the level of 2′5′-oligoadenylate synthetase in peritoneal macrophages. J Virol 53:221–227

    PubMed  CAS  Google Scholar 

  • Ho M (1980) Cellular sources of endotoxin-induced interferons. In: Schlessinger D (ed) Microbiology 1980. ASM Publ, Wash., DC, p 128

    Google Scholar 

  • McGhee JR, Michalek SM, Moore RN, Mergenhagen SE, Rosenstreich DL (1979) Genetic control of in vivo sensitivity to lipopolysaccharide: Evidence for codominant inheritance. J Immunol 122:2052–2058

    PubMed  CAS  Google Scholar 

  • O’Brien AD, Rosenstreich DL, Scher I, Campbell GH, MacDermott R, Formal SB (1980) Genetic control of susceptibility to Salmonella typhimurium in mice: Role of the LPS gene. J Immunol 134:20–14

    Google Scholar 

  • Rosenstreich DL (1981) The macrophage. In: Oppenheim JJ, Rosenstreich DL, Potter M (eds) Cellular functions in immunity and inflammation. Elsevier, NY, p 127

    Google Scholar 

  • Rosenstreich DL (1985) Genetic control of endotoxin response: C3H/HeJ mice. In: Berry LJ (ed) Handbook of endotoxin, Vol. 3: Cellular biology of endotoxin. Elsevier, Amsterdam, p 82

    Google Scholar 

  • Rosenstreich DL, Vogel SN, Jacques AR, Wahl LM, Oppenheim JJ (1978) Macrophage sensitivity to endotoxin: Genetic control by a single codominant gnen. J Immunol 121: 1664–1670

    PubMed  CAS  Google Scholar 

  • Ruco LPS, Meltzer MS, Rosenstreich DL (1978) Macrophage activation for tumor cytotoxicity: Control of macrophage tumoricidal capacity by the LPS gene. J Immunol 121:543–548

    PubMed  CAS  Google Scholar 

  • Sultzer B (1972) Genetic control of host responses to endotoxin. Infec Immun 5:107–113

    CAS  Google Scholar 

  • Truffa-Bachi P, Kaplan JG, Bona C (1977) The mitogenic effect of lipopolysaccharide. Metabolic processing of lipopolysaccharide by mouse lymphocytes. Cell Immunol 30:1–11

    Article  PubMed  CAS  Google Scholar 

  • Vogel SN, Fertsch D (1984) Endogenous interferon production by endotoxin-responsive macrophages provides an autostimulatory differentiation siganl. Infec Immun 45:417–423

    CAS  Google Scholar 

  • Vogel SN, Fertsch D (1987) Macrophages from endotoxin-hyporesponsive (Lps d) mice are permissive for Vesicular Stomatitis Virus because of reduced levels of endogenous interferon: possible mechanism for natural resistance to virus infection. J Virol 61:812–818

    PubMed  CAS  Google Scholar 

  • Vogel SN, Finbloom DS, English KE, Rosenstreich DL, Langreth SG (1983) Interferon-induced enhancement of macrophage Fc receptor expression: β-interferon treatment of C3H/HeJ macrophages results in increased numbers and density of Fc receptors. J Immunol 130: 1210–1214

    PubMed  CAS  Google Scholar 

  • Vogel SN, Hansen CT, Rosenstreich DL (1979) Characterization of a congenitally LPS-resistant athymic mouse strain. J Immunol 122: 619–622

    PubMed  CAS  Google Scholar 

  • Vogel SN, Rosenstreich DL (1981) LPS-unresponsive mice as a model for analyzing lymphokine-induced differentiation in vitro. Lymphokines 3: 149–180

    CAS  Google Scholar 

  • Watson J, Kelly K, Largen M, Taylor BA (1978) The genetic mapping of a defective LPS response gene in C3H/HeJ mice. J Immunol 120:422–424

    PubMed  CAS  Google Scholar 

  • Watson J, Kelly K, Whitlock C (1980) Genetic control of endotoxin sensitivity. In: Schlessinger D (ed) Microbiology 1980. ASM Publ, Washington, DC, p 4

    Google Scholar 

  • Watson J, Largen M, McAdam KPWJ (1977) Genetic control of endotoxic responses in mice. J Exp Med 147:39–48

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Vogel, S.N., Fultz, M.J. (1988). Lps Gene-Associated Functions. In: Mock, B., Potter, M. (eds) Genetics of Immunological Diseases. Current Topics in Microbiology and Immunology, vol 137. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-50059-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-50059-6_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-50061-9

  • Online ISBN: 978-3-642-50059-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics