Vinogradov’s method

  • K. Chandrasekharan
Part of the Die Grundlehren der mathematischen Wissenschaften book series (GL, volume 167)


Weyl’s method of estimating trigonometric sums was used in the previous chapter to prove Littlewood’s theorem on the zero-free region of ζ (s). Littlewood’s theorem was used, in turn, to obtain the following estimate of the error term in the prime number theorem:
$$\pi (x) - li\,x = O(x\,{e^{ - a\sqrt {\log x\log \log x} }})$$
,for a positive, absolute constant a. A powerful refinement of Weyl’s method was effected by I. M. Vinogradov, who applied it to the solution of a variety of problems in number theory. We shall describe the essentials ofthat method in this chapter, and use it to deduce Chudakov’s refinement of Littlewood’s theorem, to the effect that there exists a constant A1>0, such that
$$\zeta (s) \ne 0,\,for\quad \sigma \geqslant 1 - \frac{{{A_1}}} {{{{\log }^{\frac{3} {4}}}t{{(\log \log t)}^{\frac{3} {4}}}}},\,t \geqslant {t_1}$$


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin · Heidelberg 1970

Authors and Affiliations

  • K. Chandrasekharan
    • 1
  1. 1.Eidgenössische Technische Hochschule ZürichDeutschland

Personalised recommendations