The zeta-function of Riemann

  • K. Chandrasekharan
Part of the Die Grundlehren der mathematischen Wissenschaften book series (GL, volume 167)


If s is a complex number, with s = σ + it, where σ and t are real, and i2= - 1, the zeta-function of Riemann ζ is defined by the relation
$$ \zeta(s)=\sum\limits_{{n =1}}^{\infty}{{n^{{ - s}}}},\quad\sigma >1 $$


Functional Equation Entire Function Dirichlet Series Riemann Hypothesis Arithmetical Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin · Heidelberg 1970

Authors and Affiliations

  • K. Chandrasekharan
    • 1
  1. 1.Eidgenössische Technische Hochschule ZürichDeutschland

Personalised recommendations