Skip to main content

Zusammenfassung

Es wird heute recht allgemein anerkannt, daß Zellen und einzellige Lebewesen ihre Bewegungen durch spezialisierte Strukturen hervorbringen. Die bewegungsfähigen Strukturen können aktiv kürzer oder länger werden und wirken durch ihre Formänderung auf den Umriß der Zellen oder Bestandteile des Zellinnern — z. B. die Chromosomen — mechanisch ein. Infolgedessen lassen sich die Techniken, die in der chemischen Muskelphysiologie gebräuchlich sind, auch auf Zellen anwenden. Die aktiven Strukturen werden aus den Zellen isoliert und unter den vereinfachten Bedingungen des Reagensglasversuchs untersucht.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Afzelius, B. Electron microscopy of the sperm tail. J. biophys. biochem. Cytol. 5, 269 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Alexandrow, W. J. u. N. Y. Arronet Kletochnaia model. Dokl. Akad. Nauk. USSR. 110, 457 (1956).

    Google Scholar 

  • Ames, B. N., D. T. Dubinand S. M. Rosenthal Polyamines in bacterial viruses. Science 127, 814 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Barany, M., and K. Barany Studies on ,,active centres of L-myosin. Biochim. biophys. Acta 35, 293 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Belar, K. Beiträge zur Kenntnis des Mechanismus der indirekten Kernteilung. Naturwissenschaften 15, 725 (1927)

    Article  Google Scholar 

  • Bendall, J. R. A factor modifying the shortening of muscle fibre bundles by ATP. Proc. roy. Soc. B 139, 523 (1954).

    Article  Google Scholar 

  • Bendall, J. R. Myokinase as a relaxing factor in muscle. Nature (Lond.) 173, 548 (1954).

    Article  CAS  Google Scholar 

  • Bettex-Galland, M., and E. F. Lüscher Extraction of an actomyosin-like protein from human thrombocytes. Nature (Lond.) 184, 276 (1959).

    Article  CAS  Google Scholar 

  • Bishop, D. Motility of the sperm flagellum. Nature (Lond.) 182, 1638 (1958) (a).

    Article  CAS  Google Scholar 

  • Bishop, D. Mammalian sperm models, reactivated by ATP. Fed. Proc. 17, 15 (1958) (b).

    Google Scholar 

  • Bishop, D. Relaxing factors in ATP-induced motility of sperm models. Anat. Rec. 132, 414 (1958) (c).

    Google Scholar 

  • Bishop, D. , and H. Hoffmann-Berling Extracted mammalian sperm models. J. cell. comp. Physiol. 53, 445 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Born, G. V. R. The break-down of adenosine triphosphate in blood platelets during clotting. J. Physiol. (Lond.) 133, 61 P (1956).

    Google Scholar 

  • Bozler, E. Mechanism of relaxation in extracted muscle fibres. Amer. J. Physiol. 167, 276 (1951).

    PubMed  CAS  Google Scholar 

  • Bradfield, G. Fibre patterns in animal flagella and cilia. Symp. Soc. exp. biol. 9, 306 (1955).

    Google Scholar 

  • Burnashewa, S. A. Spermosin, das kontraktile Protein der Spermienzellen. Biokhimija 23, 558 (1958).

    Google Scholar 

  • Dan, K., and J.Dan Behavior of the cell surface during cleavage. Biol. Bull. 93, 163 (1947).

    Article  PubMed  CAS  Google Scholar 

  • Dan, K., and J.Dan T. Yanagitaand L. Sugiyama Behavior of the cell surface during cleavage. Protoplasma 28, 66 (1937).

    Article  CAS  Google Scholar 

  • Dukes, P.P., and L. M. Kozloff Phosphatases in bacteriophages T 2, T4 und T 5. J. biol. chem. 234, 534 (1958).

    Google Scholar 

  • Engelhardt, W. A. Enzymology and mechanochemistry of tissues and cells. Proc. Intern. Symp. Enzyme Chemistry, Tokyo 1957, 34. 1958.

    Google Scholar 

  • Engelhardt, W. A. , u. S. A. Burnashewa Lokalisierung des Protein Spermosin in Spermienzellen. Biochimija 22, 513 (1957). [Russisch.]

    Google Scholar 

  • Garen, A., and L. M. Kozloff The initiation of bacteriophage infection. In The Viruses, S. 203. New York Academic Press 1959.

    Google Scholar 

  • Goldacre, R., and R. I. Lorch Folding and unfolding of protein molecules in relation to protoplasmic streaming and ameboid movement. Nature (Lond.) 166, 497 (1950).

    Article  CAS  Google Scholar 

  • Gray, J. Ciliary movement. Cambridge 1928.

    Google Scholar 

  • Gray, J. The motility of sea urchin spermatozoa. J. exp. Biol. 32, 775 (1955).

    Google Scholar 

  • Gray, J. The motility of bull spermatozoa. J. exp. Biol. 35, 96 (1958).

    Google Scholar 

  • Hanson, J., and H.E.Huxley Structural basis of contraction in striated muscle. Symp. Soc. exp. Biol. 9, 228 (1955).

    Google Scholar 

  • Hasselbach, W. Umwandlung von Aktomyosin-ATPase in L-Myosin-ATPase. Z. Naturforsch. 7b, 163 (1952).

    CAS  Google Scholar 

  • Hasselbach, W. Die Bindung von ATP, anorganischen Phosphaten und Erdalkalien an die Strukturproteine des Muskels. Biochim. biophys. Acta 25, 562 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Hasselbach, W. Vortrag auf dem Physiol. Kongr. in Freiburg 1960.

    Google Scholar 

  • Hasselbach, W. H. Hofschneider, E. Kasperu. R. Lutz Die Sol-Gel-Umwandlung von gereinigtem Aktomyosin. Z. Naturforsch. 8b, 204 (1953).

    CAS  Google Scholar 

  • Hasselbach, W. , u. H. H. Weber Einfluß des Marsh-Bendall-Faktors auf die Kontraktion des Fasermodells. Biochim. biophys. Acta 11, 160 (1953).

    Article  PubMed  CAS  Google Scholar 

  • Heilbrunn, L. Protoplasmic viscosity of amoeba at different temperatures. Protoplasma 8, 58 (1930) (a).

    Article  Google Scholar 

  • Heilbrunn, L. The absolute viscosity of amoeba protoplasm. Protoplasma 8, 65 (1930) (b).

    Article  Google Scholar 

  • Hershey, A. D. Nucleic acid economy in bacteria infected with the bacteriophage T2. J. gen. Physiol. 37, 1 (1954).

    Article  Google Scholar 

  • Hershey, A. D. , and M. Chase Independent functions of viral protein and nucleic acid in growth of bacteriophages. J. gen. Physiol. 36, 39 (1953).

    Article  Google Scholar 

  • Hoffmann-Berling, H. ATP als Betriebsstoff von Zellbewegungen. Biochim. biophys. Acta 14, 182 (1954) (a).

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann-Berling, H. Bedeutung des ATP für die Zell-und Kernteilungsbewegung in der Anaphase. Biochim. biophys. Acta 15, 226 (1954) (b).

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann-Berling, H. Die Glycerin-Wasser extrahierte Telophasezelle als Modell der Zytokinese. Biochim. biophys. Acta 15, 332 (1954) (c).

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann-Berling, H. Geißelmodelle und ATP. Biochim. biophys. Acta 16, 146 (1955).

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann-Berling, H. Das kontraktile Eiweiß undifferenzierter Zellen. Biochim. biophys. Acta 19, 453(1956).

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann-Berling, H. Hoffmann-Berling, H. Der Mechanismus eines neuen Kontraktionszyklus. Biochim. biophys. Acta 27, 247 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann-Berling, H. , u. H. H. Weber Isolierung des kontraktilen Eiweiß aus Sarkomzellen. Naturwissenschaften 42, 608 (1955).

    Article  CAS  Google Scholar 

  • Holtzer, H., J. Abbottand M. W. Cavanaugh Some properties of embryonic cardiac myoblasts. 16, 595 (1959).

    CAS  Google Scholar 

  • Huxley, A. F. Local activation of muscle. Ann. N.Y. Acad. Sci. 81, 446 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Jacquez, J., and J. Biesele A study of Michels film on meiosis in psophus stridulus. Exp. Cell. Res. 6, 17 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Katchalsky, A., and M. Zwick Mechanochemistry and ion exchange. J. Polymer Sci. 16, 221 (1955).

    Article  CAS  Google Scholar 

  • Kellenberger, E., u. W. Arber Struktur des Schwanzes der Phagen T2 und T4 und der Mechanismus der irreversiblen Adsorption. Z. Naturforsch. 10b, 698 (1955).

    CAS  Google Scholar 

  • Kinoshita, S. The mode of action of metal-chelating substances on sperm motility. J. Fac. Sc. Tokyo, Sect. IV8, 219 (1958).

    Google Scholar 

  • Kinoshita, S. On the identity of the motility-inducing factor of flagellum and the relaxing factor of muscle. J. Fac. Sci. Tokyo, Sect. IV8, 427 (1959).

    Google Scholar 

  • Kjelley, W. W., H. M. Kalckarand L. B. Bradley The hydrolysis of purine and pyrimidine nucleoside triphosphates by myosin. J. biol. Chem. 219, 95 (1956).

    Google Scholar 

  • Kozloff, L. M., and M. Lute Contractile protein in the tail of the bacteriophage T2. J. biol. Chem. 234, 539 (1958).

    Google Scholar 

  • Kuhn, W., u. B. Hargitay Z. Elektrochem. 55, 490 (1951).

    CAS  Google Scholar 

  • Kuhn, W., u. B. Hargitay A. Ramelu. D.H.Walters Erzeugung von mechanischer aus verschiedenen Formen von chemischer Energie. Proc. 4. Intern. Congr. Biochem., Wien 1958.

    Google Scholar 

  • Lettré, H. Some investigation on cell behavior. Cancer Res. 12, 847 (1952).

    PubMed  Google Scholar 

  • Lettré, H. M. A. Albrechtu. R. Lettré Verhalten von Fibroblasten unter aeroben und anaeroben Bedingungen. Naturwissenschaften 38, 504 (1951).

    Article  Google Scholar 

  • Levine, L. Contractility of glycerinated vorticellae. Biol. Bull. 111, 319 (1956).

    Google Scholar 

  • Lewis, W. The role of a superficial plasmagel layer in changes of form, locomotion and division of cells in tissue cultures. Arch. exp. Zeilforsch. 23, 1 (1939).

    Google Scholar 

  • Lewis, W. The structure of protoplasm. W. Seifritz, Ed. Iowa 1942.

    Google Scholar 

  • Loewy, A. An actomyosin like substance from the plasmodium of a myxomycete. J. cell. comp. physiol. 40, 127 (1952).

    Article  CAS  Google Scholar 

  • Manton, I. Fine structure of plant cilia. Symp. Soc. exp. Biol. 6, 306 (1952).

    Google Scholar 

  • Marsh, B. The effects of ATP on the fibre volume of a muscle homogenate. Biochim. biophys. Acta 9, 247 (1952).

    Article  PubMed  CAS  Google Scholar 

  • Mazia, D. The organization of the mitotic apparatus. Symp. Soc. exp. Biol. 9, 335 (1955).

    Google Scholar 

  • Mazia, D. Cell division. Harvey Lect. 53, 130 (1959).

    CAS  Google Scholar 

  • Mazia, D. , and K. Dan The isolation and biochemical characterization of the mitotic apparatus. Proc. Nat. Acad. Sci. (Wash.) 38, 826 (1952).

    Article  CAS  Google Scholar 

  • Metz, C. B., D. Pitelkaand J. A. Westfall The fibrillar system of ciliates. Biol. Bull. 104 (1953).

    Google Scholar 

  • Mitchison, M. Cell membranes and cell division. Symp. Soc. exp. Biol. 6, 105 (1952).

    Google Scholar 

  • Mitchison, M. , and M. M. Swann The mechanical properties of the cell surface. J. exp. Biol. 32, 734 (1955).

    Google Scholar 

  • Morales, M. In Enzymes, Units of biological structure and function. O. Gaebler Ed. New York 1956.

    Google Scholar 

  • Nagai, T., M. Makinoseu. W. Hasselbach Der physiologische Erschlaffungsfaktor und die Muskelgrana. Biochim. biophys. Acta (im Druck).

    Google Scholar 

  • Nakajima, H. Properties of a contractile protein in a myxomycete plasmodium. Protoplasma 52, 413 (1960).

    Article  CAS  Google Scholar 

  • Nakajima, O. An ATP-sensitive protein of kidney. Jap. Circulat. J. 22, 641 (1958).

    Google Scholar 

  • Nelson, L. Enzyme distribution in fragmented bull spermatozoa. Biochim. biophys. Acta 14, 312 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Nelson, L. ATPase in rat spermatozoa. Biochim. biophys. Acta 27, 634 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Ore, A., and E. Pollard Physical mechanism of bacteriophage injection. Science 124, 430 (1956).

    Article  PubMed  CAS  Google Scholar 

  • Pekarek, J. Absolute Viscositätsmessung mit Hilfe der Brown’schen Molekularbewegung. Protoplasma 10, 510 (1930).

    Article  Google Scholar 

  • Porter, K. R., and D. E. Palade Studies on the endoplasmic reticulum. J. biophys. biochem. Cytol. 3, 269 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Portzehl, H. Gemeinsame Eigenschaften von Zell-und Muskelkontraktilität. Biochim. biophys. Acta 14, 195 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Portzehl, H. Die Bindung des Erschlaffungsfaktors von Marsh an die Muskelgrana. Biochim. biophys. Acta 26, 373 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Randall, J. T. Fine structure of some ciliate protozoa. Nature (Lond.) 178, 9 (1956).

    Article  Google Scholar 

  • Ris, H. Quantitative studies of the anaphase movement in the aphid tamalia. Biol. Bull. 85, 164 (1943).

    Article  Google Scholar 

  • Schwarzenbach, G., u. A. E. Martell Adenosindiphosphat und Triphosphat als Komplexbildner für Calcium und Magnesium. Helv. chim. Acta 39, 653 (1956).

    Article  Google Scholar 

  • Selman, C., and C.Waddington The mechanism of cleavage of the newt’segg. J. exp. Biol. 32, 700 (1955).

    Google Scholar 

  • Swann, M. M., and J. M. Mitchison The mechanism of cleavage in animal cells. Biol. Rev. 33, 103 (1958).

    Article  Google Scholar 

  • Tibbs, J. ATPase activity of algal and sperm flagella. Biochim. biophys. Acta 28, 636 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Tibbs, J. ATPase activity of perch sperm flagella. Biochim. biophys. Acta 33, 220 (1959)

    Article  PubMed  CAS  Google Scholar 

  • Tso, P., L. Bonner, L. Eggmannand J. Vinograd Observations on an ATP-sensitive protein system from the plasmodia of a myxomycete. J. gen. Physiol. 39, 325 (1956).

    Article  CAS  Google Scholar 

  • Weber, A. Ultracentrifugal separation of L-myosin and action in actomyosin sol under the influence of ATP. Biochim. biophys. Acta 19, 345 (1956).

    Article  PubMed  CAS  Google Scholar 

  • Weber, H. H. Muskelphysiologie. Fortschr. Zool. 10, 304 (1956).

    Google Scholar 

  • Wohlfahrt-Botterman, K. Funktion der Trichocysten. Arch. Protistenk. 98, 169 (1953).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1961 Springer-Verlag OHG / Berlin · Göttingen · Heidelberg

About this chapter

Cite this chapter

Hoffmann-Berling, H. (1961). Über die verschiedenen molekularen Mechanismen der Bewegungen von Zellen. In: Kramer, K., Krayer, O., Lehnartz, E., v. Muralt, A., Weber, H.H. (eds) Ergebnisse der Physiologie Biologischen Chemie und Experimentellen Pharmakologie. Ergebnisse der Physiologie Biologischen Chemie und Experimentellen Pharmakologie, vol 51. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-49946-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-49946-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-49652-3

  • Online ISBN: 978-3-642-49946-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics